2,018 research outputs found

    Односторонний и двусторонний эффект памяти формы в [([3)12]]-монокристаллах сплава Ni[49]Fe[18]Ga[27]Co[6]

    Get PDF
    This study was performed to assess the role of additional myocardial perfusion imaging during high dose dobutamine/atropine stress magnetic resonance (DSMR-wall motion) for the evaluation of patients with intermediate (50-70%) coronary artery stenosis. Routine DSMR-wall motion was combined with perfusion imaging (DSMR-perfusion) in 174 consecutive patients with chest pain syndromes who were scheduled for a clinically indicated coronary angiography. When defining CAD as the presence of a ≥ 50% stenosis, the addition of perfusion imaging improved sensitivity (90 vs. 79%, P < 0.001) with a non-significant reduction in specificity (85 vs. 90%, P = 0.13) and an improvement in overall diagnostic accuracy (88 vs. 84%, P = 0.008). Adding perfusion imaging improved sensitivity in patients with intermediate stenosis (87 vs. 72%, P = 0.03), but not in patients with severe (≥70%) stenosis (93 vs. 84%, P = 0.06). In patients with severe stenosis specificity of DSMR-perfusion versus DSMR-wall motion decreased (61 vs 70%, P = 0.001) resulting in a lower overall accuracy (71 vs 74%, P = 0.03). Using a cutoff of ≥50% for the definition of CAD, sensitivity of DSMR-perfusion compared to DSMR-wall motion was significantly higher in patients with single vessel (88 vs. 77%, P = 0.03) and multi vessel disease (93 vs. 79%, P = 0.03), whereas no significant differences were found using a cutoff of ≥70% stenosis for the definition of CAD. The addition of perfusion imaging during DSMR-wall motion improved the sensitivity in patients with intermediate coronary artery stenosis. Overall diagnostic accuracy increased only when defining CAD as ≥50% stenosis. In patients with ≥70% stenosis DSMR-wall motion alone had higher accuracy due to more false-positive cases with DSMR-perfusion

    Combined magnetic resonance coronary artery imaging, myocardial perfusion and late gadolinium enhancement in patients with suspected coronary artery disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiovascular Magnetic Resonance (CMR) imaging offers methods for the detection of ischemia and myocardial infarction as well as visualization of the coronary arteries (MRCA). However, a direct comparison of adenosine perfusion (PERF), late gadolinium enhancement (LGE) and MRCA or the results of their combination has not been performed. Aim of the study was to evaluate the feasibility/diagnostic performance of rest/stress perfusion, late gadolinium enhancement and MRCA and their combination in patients with suspected coronary artery disease (CAD) in comparison to invasive angiography.</p> <p>Methods</p> <p>Fifty-four patients (60 ± 10 years, 35 men, CAD 48%) underwent CMR including MRCA (steady state free precession, navigator whole heart approach, spatial resolution 0.7 × 0.7 × .0.9 mm, trigger delay and temporal resolution adjusted individually), stress PERF (adenosine 140 μg/min/kg), rest PERF (SSFP, 3 short axis, 1 saturation prepulse per slice) and LGE (3D inversion recovery technique) using Gd-BOPTA. Images were analyzed visually. Stenosis >50% in invasive angiography was considered significant.</p> <p>Results</p> <p>Mean study time was 68 ± 11 minutes. Sensitivity for PERF, LGE, MRCA and the combination of PERF/LGE and PERF/LGE/MRCA was 87%, 50%, 91%, 88% and 92%, respectively and specificity 88%, 96%, 46%, 88% and 56%, respectively. If image quality of MRCA was excellent (n = 18) the combination of MRCA/PERF/LGE yield a sensitivity of 86% and specificity of 91%. However, no test or combination improved diagnostic performance significantly compared to PERF alone.</p> <p>Conclusion</p> <p>In patients with CAD, the combination of stress PERF, LGE and MRCA is feasible. When compared to invasive angiography, adenosine stress perfusion outperforms CMR coronary angiography in direct comparison and yields the best results with non-significant improvement in combination with LGE and significant deterioration in combination with MRCA. MRCA may be of additional value only in a minority of patients with excellent image quality.</p

    The role of dobutamine stress cardiovascular magnetic resonance in the clinical management of patients with suspected and known coronary artery disease

    Get PDF
    BACKGROUND: Recent studies have demonstrated the consistently high diagnostic and prognostic value of dobutamine stress cardiovascular magnetic resonance (DCMR). The value of DCMR for clinical decision making still needs to be defined. Hence, the purpose of this study was to assess the utility of DCMR regarding clinical management of patients with suspected and known coronary artery disease (CAD) in a routine setting. METHODS AND RESULTS: We prospectively performed a standard DCMR examination in 1532 consecutive patients with suspected and known CAD. Patients were stratified according to the results of DCMR: DCMR-positive patients were recommended to undergo invasive coronary angiography and DCMR-negative patients received optimal medical treatment. Of 609 (40%) DCMR-positive patients coronary angiography was performed in 478 (78%) within 90 days. In 409 of these patients significant coronary stenoses ≥ 50% were present (positive predictive value 86%). Of 923 (60%) DCMR-negative patients 833 (90%) received optimal medical therapy. During a mean follow-up period of 2.1 ± 0.8 years (median: 2.1 years, interquartile range 1.5 to 2.7 years) 8 DCMR-negative patients (0.96%) sustained a cardiac event.In 131 DCMR-positive patients who did not undergo invasive angiography, 20 patients (15%) suffered cardiac events. In 90 DCMR-negative patients (10%) invasive angiography was performed within 2 years (range 0.01 to 2.0 years) with 56 patients having coronary stenoses ≥ 50%. CONCLUSION: In a routine setting DCMR proved a useful arbiter for clinical decision making and exhibited high utility for stratification and clinical management of patients with suspected and known CAD

    Multiplicity dependence of jet-like two-particle correlations in p-Pb collisions at sNN\sqrt{s_{NN}} = 5.02 TeV

    Full text link
    Two-particle angular correlations between unidentified charged trigger and associated particles are measured by the ALICE detector in p-Pb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum range 0.7 <pT,assoc<pT,trig< < p_{\rm{T}, assoc} < p_{\rm{T}, trig} < 5.0 GeV/cc is examined, to include correlations induced by jets originating from low momen\-tum-transfer scatterings (minijets). The correlations expressed as associated yield per trigger particle are obtained in the pseudorapidity range η<0.9|\eta|<0.9. The near-side long-range pseudorapidity correlations observed in high-multiplicity p-Pb collisions are subtracted from both near-side short-range and away-side correlations in order to remove the non-jet-like components. The yields in the jet-like peaks are found to be invariant with event multiplicity with the exception of events with low multiplicity. This invariance is consistent with the particles being produced via the incoherent fragmentation of multiple parton--parton scatterings, while the yield related to the previously observed ridge structures is not jet-related. The number of uncorrelated sources of particle production is found to increase linearly with multiplicity, suggesting no saturation of the number of multi-parton interactions even in the highest multiplicity p-Pb collisions. Further, the number scales in the intermediate multiplicity region with the number of binary nucleon-nucleon collisions estimated with a Glauber Monte-Carlo simulation.Comment: 23 pages, 6 captioned figures, 1 table, authors from page 17, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/161

    Multi-particle azimuthal correlations in p-Pb and Pb-Pb collisions at the CERN Large Hadron Collider

    Full text link
    Measurements of multi-particle azimuthal correlations (cumulants) for charged particles in p-Pb and Pb-Pb collisions are presented. They help address the question of whether there is evidence for global, flow-like, azimuthal correlations in the p-Pb system. Comparisons are made to measurements from the larger Pb-Pb system, where such evidence is established. In particular, the second harmonic two-particle cumulants are found to decrease with multiplicity, characteristic of a dominance of few-particle correlations in p-Pb collisions. However, when a Δη|\Delta \eta| gap is placed to suppress such correlations, the two-particle cumulants begin to rise at high-multiplicity, indicating the presence of global azimuthal correlations. The Pb-Pb values are higher than the p-Pb values at similar multiplicities. In both systems, the second harmonic four-particle cumulants exhibit a transition from positive to negative values when the multiplicity increases. The negative values allow for a measurement of v2{4}v_{2}\{4\} to be made, which is found to be higher in Pb-Pb collisions at similar multiplicities. The second harmonic six-particle cumulants are also found to be higher in Pb-Pb collisions. In Pb-Pb collisions, we generally find v2{4}v2{6}0v_{2}\{4\} \simeq v_{2}\{6\}\neq 0 which is indicative of a Bessel-Gaussian function for the v2v_{2} distribution. For very high-multiplicity Pb-Pb collisions, we observe that the four- and six-particle cumulants become consistent with 0. Finally, third harmonic two-particle cumulants in p-Pb and Pb-Pb are measured. These are found to be similar for overlapping multiplicities, when a Δη>1.4|\Delta\eta| > 1.4 gap is placed.Comment: 25 pages, 11 captioned figures, 3 tables, authors from page 20, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/87

    Meta-analysis of the diagnostic performance of stress perfusion cardiovascular magnetic resonance for detection of coronary artery disease

    Get PDF
    <p>Abstract</p> <p>Aim</p> <p>Evaluation of the diagnostic accuracy of stress perfusion cardiovascular magnetic resonance for the diagnosis of significant obstructive coronary artery disease (CAD) through meta-analysis of the available data.</p> <p>Methodology</p> <p>Original articles in any language published before July 2009 were selected from available databases (MEDLINE, Cochrane Library and BioMedCentral) using the combined search terms of magnetic resonance, perfusion, and coronary angiography; with the exploded term coronary artery disease. Statistical analysis was only performed on studies that: (1) used a [greater than or equal to] 1.5 Tesla MR scanner; (2) employed invasive coronary angiography as the reference standard for diagnosing significant obstructive CAD, defined as a [greater than or equal to] 50% diameter stenosis; and (3) provided sufficient data to permit analysis.</p> <p>Results</p> <p>From the 263 citations identified, 55 relevant original articles were selected. Only 35 fulfilled all of the inclusion criteria, and of these 26 presented data on patient-based analysis. The overall patient-based analysis demonstrated a sensitivity of 89% (95% CI: 88-91%), and a specificity of 80% (95% CI: 78-83%). Adenosine stress perfusion CMR had better sensitivity than with dipyridamole (90% (88-92%) versus 86% (80-90%), P = 0.022), and a tendency to a better specificity (81% (78-84%) versus 77% (71-82%), P = 0.065).</p> <p>Conclusion</p> <p>Stress perfusion CMR is highly sensitive for detection of CAD but its specificity remains moderate.</p

    Accelerated CMR using zonal, parallel and prior knowledge driven imaging methods

    Get PDF
    Accelerated imaging is highly relevant for many CMR applications as competing constraints with respect to spatiotemporal resolution and tolerable scan times are frequently posed. Three approaches, all involving data undersampling to increase scan efficiencies, are discussed in this review. Zonal imaging can be considered a niche but nevertheless has found application in coronary imaging and CMR flow measurements. Current work on parallel-transmit systems is expected to revive the interest in zonal imaging techniques. The second and main approach to speeding up CMR sequences has been parallel imaging. A wide range of CMR applications has benefited from parallel imaging with reduction factors of two to three routinely applied for functional assessment, perfusion, viability and coronary imaging. Large coil arrays, as are becoming increasingly available, are expected to support reduction factors greater than three to four in particular in combination with 3D imaging protocols. Despite these prospects, theoretical work has indicated fundamental limits of coil encoding at clinically available magnetic field strengths. In that respect, alternative approaches exploiting prior knowledge about the object being imaged as such or jointly with parallel imaging have attracted considerable attention. Five to eight-fold scan accelerations in cine and dynamic CMR applications have been reported and image quality has been found to be favorable relative to using parallel imaging alone

    Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions

    Get PDF
    At sufficiently high temperature and energy density, nuclear matter undergoes a transition to a phase in which quarks and gluons are not confined: the quark-gluon plasma (QGP)(1). Such an exotic state of strongly interacting quantum chromodynamics matter is produced in the laboratory in heavy nuclei high-energy collisions, where an enhanced production of strange hadrons is observed(2-6). Strangeness enhancement, originally proposed as a signature of QGP formation in nuclear collisions(7), is more pronounced for multi-strange baryons. Several effects typical of heavy-ion phenomenology have been observed in high-multiplicity proton-proton (pp) collisions(8,9), but the enhanced production of multi-strange particles has not been reported so far. Here we present the first observation of strangeness enhancement in high-multiplicity proton-proton collisions. We find that the integrated yields of strange and multi-strange particles, relative to pions, increases significantly with the event charged-particle multiplicity. The measurements are in remarkable agreement with the p-Pb collision results(10,11), indicating that the phenomenon is related to the final system created in the collision. In high-multiplicity events strangeness production reaches values similar to those observed in Pb-Pb collisions, where a QGP is formed.Peer reviewe

    Search for a common baryon source in high-multiplicity pp collisions at the LHC

    Get PDF
    We report on the measurement of the size of the particle-emitting source from two-baryon correlations with ALICE in high-multiplicity pp collisions at s=13 TeV. The source radius is studied with low relative momentum p–p, p‾–p‾, p–Λ, and p‾–Λ‾ pairs as a function of the pair transverse mass mT considering for the first time in a quantitative way the effect of strong resonance decays. After correcting for this effect, the radii extracted for pairs of different particle species agree. This indicates that protons, antiprotons, Λ s, and Λ‾ s originate from the same source. Within the measured mT range (1.1–2.2) GeV/c2the invariant radius of this common source varies between 1.3 and 0.85 fm. These results provide a precise reference for studies of the strong hadron–hadron interactions and for the investigation of collective properties in small colliding systems. © 2020 CERN for the benefit of the ALICE CollaborationPeer reviewe
    corecore