31 research outputs found

    The puzzling temporally variable optical and X-ray afterglow of GRB 101024A

    Full text link
    Aim: To present the optical observations of the afterglow of GRB 101024A and to try to reconcile these observations with the X-ray afterglow data of GRB 101024A using current afterglow models Method: We employ early optical observations using the Zadko Telescope combined with X-ray data and compare with the reverse shock/forward shock model. Results: The early optical light curve reveals a very unusual steep decay index of alpha~5. This is followed by a flattening and possibly a plateau phase coincident with a similar feature in the X-ray. We discuss these observations in the framework of the standard reverse shock/forward shock model and energy injection.We note that the plateau phase might also be the signature of the formation of a new magnetar.Comment: 5 pages, 2 figures. Accepted for publication in Astronomy and Astrophysic

    Clinical trials update of the European Organization for Research and Treatment of Cancer Breast Cancer Group

    Get PDF
    The present clinical trial update consists of a review of two of eight current studies (the 10981-22023 AMAROS trial and the 10994 p53 trial) of the European Organization for Research and Treatment of Cancer Breast Cancer Group, as well as a preview of the MIND-ACT trial. The AMAROS trial is designed to prove equivalent local/regional control for patients with proven axillary lymph node metastasis by sentinel node biopsy if treated with axillary radiotherapy instead of axillary lymph node dissection, with reduced morbidity. The p53 trial started to assess the potential predictive value of p53 using a functional assay in yeast in patients with locally advanced/inflammatory or large operable breast cancer prospectively randomised to a taxane regimen versus a nontaxane regimen

    Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts

    Get PDF
    Aims. A transient astrophysical event observed in both gravitational wave (GW) and electromagnetic (EM) channels would yield rich scientific rewards. A first program initiating EM follow-ups to possible transient GW events has been developed and exercised by the LIGO and Virgo community in association with several partners. In this paper, we describe and evaluate the methods used to promptly identify and localize GW event candidates and to request images of targeted sky locations. Methods. During two observing periods (Dec 17 2009 to Jan 8 2010 and Sep 2 to Oct 20 2010), a low-latency analysis pipeline was used to identify GW event candidates and to reconstruct maps of possible sky locations. A catalog of nearby galaxies and Milky Way globular clusters was used to select the most promising sky positions to be imaged, and this directional information was delivered to EM observatories with time lags of about thirty minutes. A Monte Carlo simulation has been used to evaluate the low-latency GW pipeline's ability to reconstruct source positions correctly. Results. For signals near the detection threshold, our low-latency algorithms often localized simulated GW burst signals to tens of square degrees, while neutron star/neutron star inspirals and neutron star/black hole inspirals were localized to a few hundred square degrees. Localization precision improves for moderately stronger signals. The correct sky location of signals well above threshold and originating from nearby galaxies may be observed with ~50% or better probability with a few pointings of wide-field telescopes.Comment: 17 pages. This version (v2) includes two tables and 1 section not included in v1. Accepted for publication in Astronomy & Astrophysic

    Accumulation of Polychlorinated Biphenyls in Adipocytes: Selective Targeting to Lipid Droplets and Role of Caveolin-1

    Get PDF
    Background : Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that preferentially accumulate in lipid-rich tissues of contaminated organisms. Although the adipose tissue constitutes a major intern reservoir of PCBs and recent epidemiological studies associate PCBs to the development of obesity and its related disorders, little is known about the mechanisms involved in their uptake by the adipose tissue and their intracellular localization in fat cells

    Intraoperative electrocorticography using high-frequency oscillations or spikes to tailor epilepsy surgery in the Netherlands (the HFO trial): a randomised, single-blind, adaptive non-inferiority trial

    Get PDF
    Background Intraoperative electrocorticography is used to tailor epilepsy surgery by analysing interictal spikes or spike patterns that can delineate epileptogenic tissue. High-frequency oscillations (HFOs) on intraoperative electrocorticography have been proposed as a new biomarker of epileptogenic tissue, with higher specificity than spikes. We prospectively tested the non-inferiority of HFO-guided tailoring of epilepsy surgery to spike-guided tailoring on seizure freedom at 1 year.Methods The HFO trial was a randomised, single-blind, adaptive non-inferiority trial at an epilepsy surgery centre (UMC Utrecht) in the Netherlands. We recruited children and adults (no age limits) who had been referred for intraoperative electrocorticography-tailored epilepsy surgery. Participants were randomly allocated (1:1) to either HFO-guided or spike-guided tailoring, using an online randomisation scheme with permuted blocks generated by an independent data manager, stratified by epilepsy type. Treatment allocation was masked to participants and clinicians who documented seizure outcome, but not to the study team or neurosurgeon. Ictiform spike patterns were always considered in surgical decision making. The primary endpoint was seizure outcome after 1 year (dichotomised as seizure freedom [defined as Engel 1A-11 vs seizure recurrence [Engel 1C-4]). We predefined a non-inferiority margin of 10% risk difference. Analysis was by intention to treat, with prespecified subgroup analyses by epilepsy type and for confounders. This completed trial is registered with the Dutch Trial Register, Toetsingonline ABR.NL44527.041.13, and ClinicalTrials.gov, NCT02207673.Findings Between Oct 10, 2014, and Jan 31,2020,78 individuals were enrolled to the study and randomly assigned (39 to HFO-guided tailoring and 39 to spike-guided tailoring). There was no loss to follow-up. Seizure freedom at 1 year occurred in 26 (67%) of 39 participants in the HFO-guided group and 35 (90%) of 39 in the spike-guided group (risk difference -23.5%, 90% CI -39.1 to -7.9; for the 48 patients with temporal lobe epilepsy, the risk difference was -25.5%, -45.1 to -6.0, and for the 30 patients with extratemporal lobe epilepsy it was -20.3%, -46.0 to 5.4). Pathology associated with poor prognosis was identified as a confounding factor, with an adjusted risk difference of-7.9% (90% CI -20.7 to 4.9; adjusted risk difference -12.5%, -31.0 to 5.9, for temporal lobe epilepsy and 5.8%, -7.7 to 19.5, for extratemporal lobe epilepsy). We recorded eight serious adverse events (five in the HFO-guided group and three in the spike-guided group) requiring hospitalisation. No patients died.Interpretation HFO-guided tailoring of epilepsy surgery was not non-inferior to spike-guided tailoring on intraoperative electrocorticography. After adjustment for confounders, HFOs show non-inferiority in extratemporal lobe epilepsy. This trial challenges the clinical value of HFOs as an epilepsy biomarker, especially in temporal lobe epilepsy. Further research is needed to establish whether HFO-guided intraoperative electrocorticography holds promise in extratemporal lobe epilepsy. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd

    First searches for optical counterparts to gravitational-wave candidate events

    Get PDF
    During the Laser Interferometer Gravitational-wave Observatory and Virgo joint science runs in 2009-2010, gravitational wave (GW) data from three interferometer detectors were analyzed within minutes to select GW candidate events and infer their apparent sky positions. Target coordinates were transmitted to several telescopes for follow-up observations aimed at the detection of an associated optical transient. Images were obtained for eight such GW candidates. We present the methods used to analyze the image data as well as the transient search results. No optical transient was identified with a convincing association with any of these candidates, and none of the GW triggers showed strong evidence for being astrophysical in nature. We compare the sensitivities of these observations to several model light curves from possible sources of interest, and discuss prospects for future joint GW-optical observations of this type

    FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS

    Get PDF
    During the LIGO and Virgo joint science runs in 2009-2010, gravitational wave (GW) data from three interferometer detectors were analyzed within minutes to select GW candidate events and infer their apparent sky positions. Target coordinates were transmitted to several telescopes for follow-up observations aimed at the detection of an associated optical transient. Images were obtained for eight such GW candidates. We present the methods used to analyze the image data as well as the transient search results. No optical transient was identified with a convincing association with any of these candidates, and none of the GW triggers showed strong evidence for being astrophysical in nature. We compare the sensitivities of these observations to several model light curves from possible sources of interest, and discuss prospects for future joint GW-optical observations of this type
    corecore