50 research outputs found

    Characterization of the Regulatory Region of the Zebrafish Prep1.1 Gene: Analogies to the Promoter of the Human PREP1

    Get PDF
    Prep1 is a developmentally essential TALE class homeodomain transcription factor. In zebrafish and mouse, Prep1 is already ubiquitously expressed at the earliest stages of development, with important tissue-specific peculiarities. The Prep1 gene in mouse is developmentally essential and has haploinsufficient tumor suppressor activity [1]. We have determined the human Prep1 transcription start site (TSS) by primer extension analysis and identified, within 20 bp, the transcription start region (TSR) of the zebrafish Prep1.1 promoter. The functions of the zebrafish 5′ upstream sequences were analyzed both by transient transfections in Hela Cells and by injection in zebrafish embryos. This analysis revealed a complex promoter with regulatory sequences extending up to −1.8, possibly −5.0 Kb, responsible for tissue specific expression. Moreover, the first intron contains a conserved tissue-specific enhancer both in zebrafish and in human cells. Finally, a two nucleotides mutation of an EGR-1 site, conserved in all species including human and zebrafish and located at a short distance from the TSS, destroyed the promoter activity of the −5.0 Kb promoter. A transgenic fish expressing GFP under the −1.8 Kb zebrafish promoter/enhancer co-expressed GFP and endogenous Prep1.1 during embryonic development. In the adult fish, GFP was expressed in hematopoietic regions like the kidney, in agreement with the essential function of Prep1 in mouse hematopoiesis. Sequence comparison showed conservation from man to fish of the sequences around the TSS, within the first intron enhancer. Moreover, about 40% of the sequences spread throughout the 5 Kbof the zebrafish promoter are concentrated in the −3 to −5 Kb of the human upstream region

    Insights into Hox Protein Function from a Large Scale Combinatorial Analysis of Protein Domains

    Get PDF
    Protein function is encoded within protein sequence and protein domains. However, how protein domains cooperate within a protein to modulate overall activity and how this impacts functional diversification at the molecular and organism levels remains largely unaddressed. Focusing on three domains of the central class Drosophila Hox transcription factor AbdominalA (AbdA), we used combinatorial domain mutations and most known AbdA developmental functions as biological readouts to investigate how protein domains collectively shape protein activity. The results uncover redundancy, interactivity, and multifunctionality of protein domains as salient features underlying overall AbdA protein activity, providing means to apprehend functional diversity and accounting for the robustness of Hox-controlled developmental programs. Importantly, the results highlight context-dependency in protein domain usage and interaction, allowing major modifications in domains to be tolerated without general functional loss. The non-pleoitropic effect of domain mutation suggests that protein modification may contribute more broadly to molecular changes underlying morphological diversification during evolution, so far thought to rely largely on modification in gene cis-regulatory sequences

    Exonic remnants of whole-genome duplication reveal cis-regulatory function of coding exons

    Get PDF
    Using a comparative genomics approach to reconstruct the fate of genomic regulatory blocks (GRBs) and identify exonic remnants that have survived the disappearance of their host genes after whole-genome duplication (WGD) in teleosts, we discover a set of 38 candidate cis-regulatory coding exons (RCEs) with predicted target genes. These elements demonstrate evolutionary separation of overlapping protein-coding and regulatory information after WGD in teleosts. We present evidence that the corresponding mammalian exons are still under both coding and non-coding selection pressure, are more conserved than other protein coding exons in the host gene and several control sets, and share key characteristics with highly conserved non-coding elements in the same regions. Their dual function is corroborated by existing experimental data. Additionally, we show examples of human exon remnants stemming from the vertebrate 2R WGD. Our findings suggest that long-range cis-regulatory inputs for developmental genes are not limited to non-coding regions, but can also overlap the coding sequence of unrelated genes. Thus, exonic regulatory elements in GRBs might be functionally equivalent to those in non-coding regions, calling for a re-evaluation of the sequence space in which to look for long-range regulatory elements and experimentally test their activity

    Mutations in the Polycomb Group Gene polyhomeotic Lead to Epithelial Instability in both the Ovary and Wing Imaginal Disc in Drosophila

    Get PDF
    Most human cancers originate from epithelial tissues and cell polarity and adhesion defects can lead to metastasis. The Polycomb-Group of chromatin factors were first characterized in Drosophila as repressors of homeotic genes during development, while studies in mammals indicate a conserved role in body plan organization, as well as an implication in other processes such as stem cell maintenance, cell proliferation, and tumorigenesis. We have analyzed the function of the Drosophila Polycomb-Group gene polyhomeotic in epithelial cells of two different organs, the ovary and the wing imaginal disc.Clonal analysis of loss and gain of function of polyhomeotic resulted in segregation between mutant and wild-type cells in both the follicular and wing imaginal disc epithelia, without excessive cell proliferation. Both basal and apical expulsion of mutant cells was observed, the former characterized by specific reorganization of cell adhesion and polarity proteins, the latter by complete cytoplasmic diffusion of these proteins. Among several candidate target genes tested, only the homeotic gene Abdominal-B was a target of PH in both ovarian and wing disc cells. Although overexpression of Abdominal-B was sufficient to cause cell segregation in the wing disc, epistatic analysis indicated that the presence of Abdominal-B is not necessary for expulsion of polyhomeotic mutant epithelial cells suggesting that additional polyhomeotic targets are implicated in this phenomenon.Our results indicate that polyhomeotic mutations have a direct effect on epithelial integrity that can be uncoupled from overproliferation. We show that cells in an epithelium expressing different levels of polyhomeotic sort out indicating differential adhesive properties between the cell populations. Interestingly, we found distinct modalities between apical and basal expulsion of ph mutant cells and further studies of this phenomenon should allow parallels to be made with the modified adhesive and polarity properties of different types of epithelial tumors

    Hox cluster duplication in the basal teleost Hiodon alosoides (Osteoglossomorpha)

    Get PDF
    Large-scale—even genome-wide—duplications have repeatedly been invoked as an explanation for major radiations. Teleosts, the most species-rich vertebrate clade, underwent a “fish-specific genome duplication” (FSGD) that is shared by most ray-finned fish lineages. We investigate here the Hox complement of the goldeye (Hiodon alosoides), a representative of Osteoglossomorpha, the most basal teleostean clade. An extensive PCR survey reveals that goldeye has at least eight Hox clusters, indicating a duplicated genome compared to basal actinopterygians. The possession of duplicated Hox clusters is uncoupled to species richness. The Hox system of the goldeye is substantially different from that of other teleost lineages, having retained several duplicates of Hox genes for which crown teleosts have lost at least one copy. A detailed analysis of the PCR fragments as well as full length sequences of two HoxA13 paralogs, and HoxA10 and HoxC4 genes places the duplication event close in time to the divergence of Osteoglossomorpha and crown teleosts. The data are consistent with—but do not conclusively prove—that Osteoglossomorpha shares the FSGD

    Transcriptional Enhancers in Protein-Coding Exons of Vertebrate Developmental Genes

    Get PDF
    Many conserved noncoding sequences function as transcriptional enhancers that regulate gene expression. Here, we report that protein-coding DNA also frequently contains enhancers functioning at the transcriptional level. We tested the enhancer activity of 31 protein-coding exons, which we chose based on strong sequence conservation between zebrafish and human, and occurrence in developmental genes, using a Tol2 transposable GFP reporter assay in zebrafish. For each exon we measured GFP expression in hundreds of embryos in 10 anatomies via a novel system that implements the voice-recognition capabilities of a cellular phone. We find that 24/31 (77%) exons drive GFP expression compared to a minimal promoter control, and 14/24 are anatomy-specific (expression in four anatomies or less). GFP expression driven by these coding enhancers frequently overlaps the anatomies where the host gene is expressed (60%), suggesting self-regulation. Highly conserved coding sequences and highly conserved noncoding sequences do not significantly differ in enhancer activity (coding: 24/31 vs. noncoding: 105/147) or tissue-specificity (coding: 14/24 vs. noncoding: 50/105). Furthermore, coding and noncoding enhancers display similar levels of the enhancer-related histone modification H3K4me1 (coding: 9/24 vs noncoding: 34/81). Meanwhile, coding enhancers are over three times as likely to contain an H3K4me1 mark as other exons of the host gene. Our work suggests that developmental transcriptional enhancers do not discriminate between coding and noncoding DNA and reveals widespread dual functions in protein-coding DNA

    A High-Resolution Map of Human Evolutionary Constraint Using 29 Mammals

    Get PDF
    The comparison of related genomes has emerged as a powerful lens for genome interpretation. Here we report the sequencing and comparative analysis of 29 eutherian genomes. We confirm that at least 5.5% of the human genome has undergone purifying selection, and locate constrained elements covering ~4.2% of the genome. We use evolutionary signatures and comparisons with experimental data sets to suggest candidate functions for ~60% of constrained bases. These elements reveal a small number of new coding exons, candidate stop codon readthrough events and over 10,000 regions of overlapping synonymous constraint within protein-coding exons. We find 220 candidate RNA structural families, and nearly a million elements overlapping potential promoter, enhancer and insulator regions. We report specific amino acid residues that have undergone positive selection, 280,000 non-coding elements exapted from mobile elements and more than 1,000 primate- and human-accelerated elements. Overlap with disease-associated variants indicates that our findings will be relevant for studies of human biology, health and disease.National Human Genome Research Institute (U.S.)National Institute of General Medical Sciences (U.S.) (Grant number GM82901)National Science Foundation (U.S.). Postdoctural Fellowship (Award 0905968)National Science Foundation (U.S.). Career (0644282)National Institutes of Health (U.S.) (R01-HG004037)Alfred P. Sloan Foundation.Austrian Science Fund. Erwin Schrodinger Fellowshi

    Sp6 and Sp8 transcription factors control AER formation and dorsal-ventral patterning in limb development

    Get PDF
    The formation and maintenance of the apical ectodermal ridge (AER) is critical for the outgrowth and patterning of the vertebrate limb. The induction of the AER is a complex process that relies on integrated interactions among the Fgf, Wnt, and Bmp signaling pathways that operate within the ectoderm and between the ectoderm and the mesoderm of the early limb bud. The transcription factors Sp6 and Sp8 are expressed in the limb ectoderm and AER during limb development. Sp6 mutant mice display a mild syndactyly phenotype while Sp8 mutants exhibit severe limb truncations. Both mutants show defects in AER maturation and in dorsal-ventral patterning. To gain further insights into the role Sp6 and Sp8 play in limb development, we have produced mice lacking both Sp6 and Sp8 activity in the limb ectoderm. Remarkably, the elimination or significant reduction in Sp6;Sp8 gene dosage leads to tetra-amelia; initial budding occurs, but neither Fgf8 nor En1 are activated. Mutants bearing a single functional allele of Sp8 (Sp6-/-;Sp8+/-) exhibit a split-hand/foot malformation phenotype with double dorsal digit tips probably due to an irregular and immature AER that is not maintained in the center of the bud and on the abnormal expansion of Wnt7a expression to the ventral ectoderm. Our data are compatible with Sp6 and Sp8 working together and in a dose-dependent manner as indispensable mediators of Wnt/βcatenin and Bmp signaling in the limb ectoderm. We suggest that the function of these factors links proximal-distal and dorsal-ventral patterning

    In vitro generation of neuromesodermal progenitors reveals distinct roles for wnt signalling in the specification of spinal cord and paraxial mesoderm identity

    Get PDF
    Cells of the spinal cord and somites arise from shared, dual-fated precursors, located towards the posterior of the elongating embryo. Here we show that these neuromesodermal progenitors (NMPs) can readily be generated in vitro from mouse and human pluripotent stem cells by activating Wnt and Fgf signalling, timed to emulate in vivo development. Similar to NMPs in vivo, these cells co-express the neural factor Sox2 and the mesodermal factor Brachyury and differentiate into neural and paraxial mesoderm in vitro and in vivo. The neural cells produced by NMPs have spinal cord but not anterior neural identity and can differentiate into spinal cord motor neurons. This is consistent with the shared origin of spinal cord and somites and the distinct ontogeny of the anterior and posterior nervous system. Systematic analysis of the transcriptome during differentiation identifies the molecular correlates of each of the cell identities and the routes by which they are obtained. Moreover, we take advantage of the system to provide evidence that Brachyury represses neural differentiation and that signals from mesoderm are not necessary to induce the posterior identity of spinal cord cells. This indicates that the mesoderm inducing and posteriorising functions of Wnt signalling represent two molecularly separate activities. Together the data illustrate how reverse engineering normal developmental mechanisms allows the differentiation of specific cell types in vitro and the analysis of previous difficult to access aspects of embryo development
    corecore