998 research outputs found

    Spatially Bandgap-Graded MoS₂₍₁-ₓ₎Se₂ₓ Homojunctions for Self-Powered Visible–Near-Infrared Phototransistors

    Get PDF
    Ternary transition metal dichalcogenide alloys with spatially graded bandgaps are an emerging class of two-dimensional materials with unique features, which opens up new potential for device applications. Here, visible–near-infrared and self-powered phototransistors based on spatially bandgap-graded MoS2(1−x)Se2x alloys, synthesized by a simple and controllable chemical solution deposition method, are reported. The graded bandgaps, arising from the spatial grading of Se composition and thickness within a single domain, are tuned from 1.83 to 1.73 eV, leading to the formation of a homojunction with a built-in electric field. Consequently, a strong and sensitive gate-modulated photovoltaic effect is demonstrated, enabling the homojunction phototransistors at zero bias to deliver a photoresponsivity of 311 mA W−1, a specific detectivity up to ~ 1011 Jones, and an on/off ratio up to ~ 104. Remarkably, when illuminated by the lights ranging from 405 to 808 nm, the biased devices yield a champion photoresponsivity of 191.5 A W−1, a specific detectivity up to ~ 1012 Jones, a photoconductive gain of 106–107, and a photoresponsive time in the order of ~ 50 ms. These results provide a simple and competitive solution to the bandgap engineering of two-dimensional materials for device applications without the need for p–n junctions

    The Hide-and-Seek of Grain Boundaries from Moire Pattern Fringe of Two-Dimensional Graphene

    Get PDF
    Grain boundaries (GBs) commonly exist in crystalline materials and affect various properties of materials. The facile identification of GBs is one of the significant requirements for systematical study of polycrystalline materials including recently emerging two-dimensional materials. Previous observations of GBs have been performed by various tools including high resolution transmission electron microscopy. However, a method to easily identify GBs, especially in the case of low-angle GBs, has not yet been well established. In this paper, we choose graphene bilayers with a GB as a model system and investigate the effects of interlayer rotations to the identification of GBs. We provide a critical condition between adjacent moire fringe spacings, which determines the possibility of GB recognition. In addition, for monolayer graphene with a grain boundary, we demonstrate that low-angle GBs can be distinguished easily by inducing moire patterns deliberately with an artificial reference overlayopen0

    Integrated genome and transcriptome sequencing identifies a noncoding mutation in the genome replication factor DONSON as the cause of microcephaly-micromelia syndrome

    Get PDF
    While next-generation sequencing has accelerated the discovery of human disease genes, progress has been largely limited to the "low hanging fruit" of mutations with obvious exonic coding or canonical splice site impact. In contrast, the lack of high-throughput, unbiased approaches for functional assessment of most noncoding variants has bottlenecked gene discovery. We report the integration of transcriptome sequencing (RNA-seq), which surveys all mRNAs to reveal functional impacts of variants at the transcription level, into the gene discovery framework for a unique human disease, microcephaly-micromelia syndrome (MMS). MMS is an autosomal recessive condition described thus far in only a single First Nations population and causes intrauterine growth restriction, severe microcephaly, craniofacial anomalies, skeletal dysplasia, and neonatal lethality. Linkage analysis of affected families, including a very large pedigree, identified a single locus on Chromosome 21 linked to the disease (LOD > 9). Comprehensive genome sequencing did not reveal any pathogenic coding or canonical splicing mutations within the linkage region but identified several nonconserved noncoding variants. RNA-seq analysis detected aberrant splicing in DONSON due to one of these noncoding variants, showing a causative role for DONSON disruption in MMS. We show that DONSON is expressed in progenitor cells of embryonic human brain and other proliferating tissues, is co-expressed with components of the DNA replication machinery, and that Donson is essential for early embryonic development in mice as well, suggesting an essential conserved role for DONSON in the cell cycle. Our results demonstrate the utility of integrating transcriptomics into the study of human genetic disease when DNA sequencing alone is not sufficient to reveal the underlying pathogenic mutation

    Determination of EGFR Endocytosis Kinetic by Auto-Regulatory Association of PLD1 with mu 2

    Get PDF
    Background: Upon ligand binding, cell surface signaling receptors are internalized through a process tightly regulated by endocytic proteins and adaptor protein 2 (AP2) to orchestrate them. Although the molecular identities and roles of endocytic proteins are becoming clearer, it is still unclear what determines the receptor endocytosis kinetics which is mainly regulated by the accumulation of endocytic apparatus to the activated receptors. Methodology/Principal Findings: Here we employed the kinetic analysis of endocytosis and adaptor recruitment to show that ??2, a subunit of AP2 interacts directly with phospholipase D (PLD)1, a receptor-associated signaling protein and this facilitates the membrane recruitment of AP2 and the endocytosis of epidermal growth factor receptor (EGFR). We also demonstrate that the PLD1-??2 interaction requires the binding of PLD1 with phosphatidic acid, its own product. Conclusions/Significance: These results suggest that the temporal regulation of EGFR endocytosis is achieved by auto-regulatory PLD1 which senses the receptor activation and triggers the translocation of AP2 near to the activated receptor.open3

    Excessive HDAC activation is critical for neurodegeneration in the rd1 mouse

    Get PDF
    Inherited retinal degenerations, collectively termed retinitis pigmentosa (RP), constitute one of the leading causes of blindness in the developed world. RP is at present untreatable and the underlying neurodegenerative mechanisms are unknown, even though the genetic causes are often established. Acetylation and deacetylation of histones, carried out by histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively, affects cellular division, differentiation, death and survival. We found acetylation of histones and probably other proteins to be dramatically reduced in degenerating photoreceptors in the rd1 human homologous mouse model for RP. Using a custom developed in situ HDAC activity assay, we show that overactivation of HDAC classes I/II temporally precedes photoreceptor degeneration. Moreover, pharmacological inhibition of HDACs I/II activity in rd1 organotypic retinal explants decreased activity of poly-ADP-ribose-polymerase and strongly reduced photoreceptor cell death. These findings highlight the importance of protein acetylation for photoreceptor cell death and survival and propose certain HDAC classes as novel targets for the pharmacological intervention in RP

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Human Hepatitis B Virus Production in Avian Cells Is Characterized by Enhanced RNA Splicing and the Presence of Capsids Containing Shortened Genomes

    Get PDF
    Experimental studies on hepatitis B virus (HBV) replication are commonly done with human hepatoma cells to reflect the natural species and tissue tropism of the virus. However, HBV can also replicate, upon transfection of virus coding plasmids, in cells of other species. In such cross-species transfection experiments with chicken LMH hepatoma cells, we previously observed the formation of HBV genomes with aberrant electrophoretic mobility, in addition to the those DNA species commonly seen in human HepG2 hepatoma cells. Here, we report that these aberrant DNA forms are mainly due to excessive splicing of HBV pregenomic RNA and the abundant synthesis of spliced DNA products, equivalent to those also made in human cells, yet at much lower level. Mutation of the common splice acceptor site abolished splicing and in turn enhanced production of DNA from full-length pgRNA in transfected LMH cells. The absence of splicing made other DNA molecules visible, that were shortened due to the lack of sequences in the core protein coding region. Furthermore, there was nearly full-length DNA in the cytoplasm of LMH cells that was not protected in viral capsids. Remarkably, we have previously observed similar shortened genomes and non-protected viral DNA in human HepG2 cells, yet exclusively in the nucleus where uncoating and final release of viral genomes occurs. Hence, two effects reflecting capsid disassembly in the nucleus in human HepG2 cells are seen in the cytoplasm of chicken LMH cells

    X-ray emission from the Sombrero galaxy: discrete sources

    Get PDF
    We present a study of discrete X-ray sources in and around the bulge-dominated, massive Sa galaxy, Sombrero (M104), based on new and archival Chandra observations with a total exposure of ~200 ks. With a detection limit of L_X = 1E37 erg/s and a field of view covering a galactocentric radius of ~30 kpc (11.5 arcminute), 383 sources are detected. Cross-correlation with Spitler et al.'s catalogue of Sombrero globular clusters (GCs) identified from HST/ACS observations reveals 41 X-rays sources in GCs, presumably low-mass X-ray binaries (LMXBs). We quantify the differential luminosity functions (LFs) for both the detected GC and field LMXBs, whose power-low indices (~1.1 for the GC-LF and ~1.6 for field-LF) are consistent with previous studies for elliptical galaxies. With precise sky positions of the GCs without a detected X-ray source, we further quantify, through a fluctuation analysis, the GC LF at fainter luminosities down to 1E35 erg/s. The derived index rules out a faint-end slope flatter than 1.1 at a 2 sigma significance, contrary to recent findings in several elliptical galaxies and the bulge of M31. On the other hand, the 2-6 keV unresolved emission places a tight constraint on the field LF, implying a flattened index of ~1.0 below 1E37 erg/s. We also detect 101 sources in the halo of Sombrero. The presence of these sources cannot be interpreted as galactic LMXBs whose spatial distribution empirically follows the starlight. Their number is also higher than the expected number of cosmic AGNs (52+/-11 [1 sigma]) whose surface density is constrained by deep X-ray surveys. We suggest that either the cosmic X-ray background is unusually high in the direction of Sombrero, or a distinct population of X-ray sources is present in the halo of Sombrero.Comment: 11 figures, 5 tables, ApJ in pres

    Azimuthal anisotropy of charged particles at high transverse momenta in PbPb collisions at sqrt(s[NN]) = 2.76 TeV

    Get PDF
    The azimuthal anisotropy of charged particles in PbPb collisions at nucleon-nucleon center-of-mass energy of 2.76 TeV is measured with the CMS detector at the LHC over an extended transverse momentum (pt) range up to approximately 60 GeV. The data cover both the low-pt region associated with hydrodynamic flow phenomena and the high-pt region where the anisotropies may reflect the path-length dependence of parton energy loss in the created medium. The anisotropy parameter (v2) of the particles is extracted by correlating charged tracks with respect to the event-plane reconstructed by using the energy deposited in forward-angle calorimeters. For the six bins of collision centrality studied, spanning the range of 0-60% most-central events, the observed v2 values are found to first increase with pt, reaching a maximum around pt = 3 GeV, and then to gradually decrease to almost zero, with the decline persisting up to at least pt = 40 GeV over the full centrality range measured.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore