154 research outputs found

    PPPC 4 DM ID: A Poor Particle Physicist Cookbook for Dark Matter Indirect Detection

    Full text link
    We provide ingredients and recipes for computing signals of TeV-scale Dark Matter annihilations and decays in the Galaxy and beyond. For each DM channel, we present the energy spectra of electrons and positrons, antiprotons, antideuterons, gamma rays, neutrinos and antineutrinos e, mu, tau at production, computed by high-statistics simulations. We estimate the Monte Carlo uncertainty by comparing the results yielded by the Pythia and Herwig event generators. We then provide the propagation functions for charged particles in the Galaxy, for several DM distribution profiles and sets of propagation parameters. Propagation of electrons and positrons is performed with an improved semi-analytic method that takes into account position-dependent energy losses in the Milky Way. Using such propagation functions, we compute the energy spectra of electrons and positrons, antiprotons and antideuterons at the location of the Earth. We then present the gamma ray fluxes, both from prompt emission and from Inverse Compton scattering in the galactic halo. Finally, we provide the spectra of extragalactic gamma rays. All results are available in numerical form and ready to be consumed.Comment: 57 pages with many figures and tables. v4: updated to include a 125 higgs boson, computation and discussion of extragalactic spectra corrected, some other typos fixed; all these corrections and updates are reflected on the numerical ingredients available at http://www.marcocirelli.net/PPPC4DMID.html they correspond to Release 2.

    Measurement of the inclusive semileptonic branching fraction of B mesons and |Vcb|

    Full text link
    We present a measurement of the electron spectrum from inclusive semileptonic {\it B} decay, using 5.1 fb1^{-1} of Υ(4S)\Upsilon(4S) data collected with the Belle detector. A high-momentum lepton tag was used to separate the semileptonic {\it B} decay electrons from secondary decay electrons. We obtained the branching fraction, B(BXe+ν)=(10.90±0.12±0.49){\cal B}(B\to X e^+ \nu) = (10.90 \pm 0.12 \pm 0.49)%, with minimal model dependence. From this measurement, we derive a value for the Cabibbo-Kobayashi-Maskawa matrix element Vcb=0.0408±0.0010(exp)±0.0025(th)|V_{cb}| = 0.0408 \pm 0.0010 {\rm (exp)} \pm 0.0025{\rm (th)}.Comment: 16 pages, 3 figures, 3 table

    Diagnosis of obstructive coronary artery disease using computed tomography angiography in patients with stable chest pain depending on clinical probability and in clinically important subgroups: Meta-analysis of individual patient data

    Get PDF
    Objective To determine whether coronary computed tomography angiography (CTA) should be performed in patients with any clinical probability of coronary artery disease (CAD), and whether the diagnostic performance differs between subgroups of patients. Design Prospectively designed meta-analysis of individual patient data from prospective diagnostic accuracy studies. Data sources Medline, Embase, and Web of Science for published studies. Unpublished studies were identified via direct contact with participating investigators. Eligibility criteria for selecting studies Prospective diagnostic accuracy studies that compared coronary CTA with coronary angiography as the reference standard, using at least a 50% diameter reduction as a cutoff value for obstructive CAD. All patients needed to have a clinical indication for coronary angiography due to suspected CAD, and both tests had to be performed in all patients. Results had to be provided using 2 72 or 3 72 cross tabulations for the comparison of CTA with coronary angiography. Primary outcomes were the positive and negative predictive values of CTA as a function of clinical pretest probability of obstructive CAD, analysed by a generalised linear mixed model; calculations were performed including and excluding non-diagnostic CTA results. The no-treat/treat threshold model was used to determine the range of appropriate pretest probabilities for CTA. The threshold model was based on obtained post-test probabilities of less than 15% in case of negative CTA and above 50% in case of positive CTA. Sex, angina pectoris type, age, and number of computed tomography detector rows were used as clinical variables to analyse the diagnostic performance in relevant subgroups. Results Individual patient data from 5332 patients from 65 prospective diagnostic accuracy studies were retrieved. For a pretest probability range of 7-67%, the treat threshold of more than 50% and the no-treat threshold of less than 15% post-test probability were obtained using CTA. At a pretest probability of 7%, the positive predictive value of CTA was 50.9% (95% confidence interval 43.3% to 57.7%) and the negative predictive value of CTA was 97.8% (96.4% to 98.7%); corresponding values at a pretest probability of 67% were 82.7% (78.3% to 86.2%) and 85.0% (80.2% to 88.9%), respectively. The overall sensitivity of CTA was 95.2% (92.6% to 96.9%) and the specificity was 79.2% (74.9% to 82.9%). CTA using more than 64 detector rows was associated with a higher empirical sensitivity than CTA using up to 64 rows (93.4% v 86.5%, P=0.002) and specificity (84.4% v 72.6%, P<0.001). The area under the receiver-operating-characteristic curve for CTA was 0.897 (0.889 to 0.906), and the diagnostic performance of CTA was slightly lower in women than in with men (area under the curve 0.874 (0.858 to 0.890) v 0.907 (0.897 to 0.916), P<0.001). The diagnostic performance of CTA was slightly lower in patients older than 75 (0.864 (0.834 to 0.894), P=0.018 v all other age groups) and was not significantly influenced by angina pectoris type (typical angina 0.895 (0.873 to 0.917), atypical angina 0.898 (0.884 to 0.913), non-anginal chest pain 0.884 (0.870 to 0.899), other chest discomfort 0.915 (0.897 to 0.934)). Conclusions In a no-treat/treat threshold model, the diagnosis of obstructive CAD using coronary CTA in patients with stable chest pain was most accurate when the clinical pretest probability was between 7% and 67%. Performance of CTA was not influenced by the angina pectoris type and was slightly higher in men and lower in older patients. Systematic review registration PROSPERO CRD42012002780

    Updated precision measurement of the average lifetime of B hadrons

    Get PDF
    The measurement of the average lifetime of B hadrons using inclusively reconstructed secondary vertices has been updated using both an improved processing of previous data and additional statistics from new data. This has reduced the statistical and systematic uncertainties and gives \tau_{\mathrm{B}} = 1.582 \pm 0.011\ \mathrm{(stat.)} \pm 0.027\ \mathrm{(syst.)}\ \mathrm{ps.} Combining this result with the previous result based on charged particle impact parameter distributions yields \tau_{\mathrm{B}} = 1.575 \pm 0.010\ \mathrm{(stat.)} \pm 0.026\ \mathrm{(syst.)}\ \mathrm{ps.

    Limits on the production of scalar leptoquarks from Z (0) decays at LEP

    Get PDF
    A search has been made for pairs and for single production of scalar leptoquarks of the first and second generations using a data sample of 392000 Z0 decays from the DELPHI detector at LEP 1. No signal was found and limits on the leptoquark mass, production cross section and branching ratio were set. A mass limit at 95% confidence level of 45.5 GeV/c2 was obtained for leptoquark pair production. The search for the production of a single leptoquark probed the mass region above this limit and its results exclude first and second generation leptoquarks D0 with masses below 65 GeV/c2 and 73 GeV/c2 respectively, at 95% confidence level, assuming that the D0lq Yukawa coupling alpha(lambda) is equal to the electromagnetic one. An upper limit is also given on the coupling alpha(lambda) as a function of the leptoquark mass m(D0)

    Diagnosis of obstructive coronary artery disease using computed tomography angiography in patients with stable chest pain depending on clinical probability and in clinically important subgroups: Meta-analysis of individual patient data

    Get PDF
    Objective To determine whether coronary computed tomography angiography (CTA) should be performed in patients with any clinical probability of coronary artery disease (CAD), and whether the diagnostic performance differs between subgroups of patients. Design Prospectively designed meta-analysis of individual patient data from prospective diagnostic accuracy studies. Data sources Medline, Embase, and Web of Science for published studies. Unpublished studies were identified via direct contact with participating investigators. Eligibility criteria for selecting studies Prospective diagnostic accuracy studies that compared coronary CTA with coronary angiography as the reference standard, using at least a 50% diameter reduction as a cutoff value for obstructive CAD. All patients needed to have a clinical indication for coronary angiography due to suspected CAD, and both tests had to be performed in all patients. Results had to be provided using 2×2 or 3×2 cross tabulations for the comparison of CTA with coronary angiography. Primary outcomes were the positive and negative predictive values of CTA as a function of clinical pretest probability of obstructive CAD, analysed by a generalised linear mixed model; calculations were performed including and excluding non-diagnostic CTA results. The no-treat/treat threshold model was used to determine the range of appropriate pretest probabilities for CTA. The threshold model was based on obtained post-test probabilities of less than 15% in case of negative CTA and above 50% in case of positive CTA. Sex, angina pectoris type, age, and number of computed tomography detector rows were used as clinical variables to analyse the diagnostic performance in relevant subgroups. Results Individual patient data from 5332 patients from 65 prospective diagnostic accuracy studies were retrieved. For a pretest probability range of 7-67%, the treat threshold of more than 50% and the no-treat threshold of less than 15% post-test probability were obtained using CTA. At a pretest probability of 7%, the positive predictive value of CTA was 50.9% (95% confidence interval 43.3% to 57.7%) and the negative predictive value of CTA was 97.8% (96.4% to 98.7%); corresponding values at a pretest probability of 67% were 82.7% (78.3% to 86.2%) and 85.0% (80.2% to 88.9%), respectively. The overall sensitivity of CTA was 95.2% (92.6% to 96.9%) and the specificity was 79.2% (74.9% to 82.9%). CTA using more than 64 detector rows was associated with a higher empirical sensitivity than CTA using up to 64 rows (93.4% v 86.5%, P=0.002) and specificity (84.4% v 72.6%, P<0.001). The area under the receiver-operating-characteristic curve for CTA was 0.897 (0.889 to 0.906), and the diagnostic performance of CTA was slightly lower in women than in with men (area under the curve 0.874 (0.858 to 0.890) v 0.907 (0.897 to 0.916), P<0.001). The diagnostic performance of CTA was slightly lower in patients older than 75 (0.864 (0.834 to 0.894), P=0.018 v all other age groups) and was not significantly influenced by angina pectoris type (typical angina 0.895 (0.873 to 0.917), atypical angina 0.898 (0.884 to 0.913), non-anginal chest pain 0.884 (0.870 to 0.899), other chest discomfort 0.915 (0.897 to 0.934)). Conclusions In a no-treat/treat threshold model, the diagnosis of obstructive CAD using coronary CTA in patients with stable chest pain was most accurate when the clinical pretest probability was between 7% and 67%. Performance of CTA was not influenced by the angina pectoris type and was slightly higher in men and lower in older patients. Systematic review registration PROSPERO CRD42012002780

    Traditional and transgenic strategies for controlling tomato-infecting begomoviruses

    Full text link

    Introduction and Historical Review

    Get PDF

    Elliptic flow of identified hadrons in Pb-Pb collisions at 1asNN = 2.76 TeV

    Get PDF
    The elliptic flow coefficient (v2) of identified particles in Pb-Pb collisions at 1asNN = 2.76 TeV was measured with the ALICE detector at the Large Hadron Collider (LHC). The results were obtained with the Scalar Product method, a two-particle corre- lation technique, using a pseudo-rapidity gap of | 06\u3b7| > 0.9 between the identified hadron under study and the reference particles. The v2 is reported for \u3c0\ub1, K\ub1, K0S, p+p, \u3c6, \u39b+\u39b, \u39e 12+\u39e+ and \u3a9 12+\u3a9+ in several collision centralities. In the low transverse momentum (pT) region, pT 3 GeV/c

    The Physics of the B Factories

    Get PDF
    corecore