1,442 research outputs found

    The High Arctic in Extreme Winters: Vortex, Temperature, and MLS and ACE-FTS Trace Gas Evolution

    Get PDF
    The first three Canadian Arctic Atmospheric Chemistry Experiment (ACE) Validation Campaigns at Eureka (80° N, 86° W) were during two extremes of Arctic winter variability: Stratospheric sudden warmings (SSWs) in 2004 and 2006 were among the strongest, most prolonged on record; 2005 was a record cold winter. New satellite measurements from ACE-Fourier Transform Spectrometer (ACE-FTS), Sounding of the Atmosphere using Broadband Emission Radiometry, and Aura Microwave Limb Sounder (MLS), with meteorological analyses and Eureka lidar and radiosonde temperatures, are used to detail the meteorology in these winters, to demonstrate its influence on transport and chemistry, and to provide a context for interpretation of campaign observations. During the 2004 and 2006 SSWs, the vortex broke down throughout the stratosphere, reformed quickly in the upper stratosphere, and remained weak in the middle and lower stratosphere. The stratopause reformed at very high altitude, above where it could be accurately represented in the meteorological analyses. The 2004 and 2006 Eureka campaigns were during the recovery from the SSWs, with the redeveloping vortex over Eureka. 2005 was the coldest winter on record in the lower stratosphere, but with an early final warming in mid-March. The vortex was over Eureka at the start of the 2005 campaign, but moved away as it broke up. Disparate temperature profile structure and vortex evolution resulted in much lower (higher) temperatures in the upper (lower) stratosphere in 2004 and 2006 than in 2005. Satellite temperatures agree well with Eureka radiosondes, and with lidar data up to 50–60 km. Consistent with a strong, cold upper stratospheric vortex and enhanced radiative cooling after the SSWs, MLS and ACE-FTS trace gas measurements show strongly enhanced descent in the upper stratospheric vortex during the 2004 and 2006 Eureka campaigns compared to that in 2005

    On the multispacecraft determination of periodic surface wave phase speeds and wavelengths

    Get PDF
    Observations of surface waves on the magnetopause indicate a wide range of phase velocities and wavelengths. Their multispacecraft analysis allows a more precise determination of wave characteristics than ever before and reveal shortcomings of approximations to the phase speed that take a predetermined fraction of the magnetosheath speed or the average flow velocity in the boundary layer. We show that time lags between two or more spacecraft can give a qualitative upper estimate, and we confirm the unreliability of flow approximations often used by analyzing a few cases. Using two‐point distant magnetic field observations and spectral analysis of the tailward magnetic field component, we propose an alternative method to estimate the wavelength and phase speed at a single spacecraft from a statistical fit to the data at the other site

    Short Large-Amplitude Magnetic Structures (SLAMS) at Venus

    Get PDF
    We present the first observation of magnetic fluctuations consistent with Short Large-Amplitude Magnetic Structures (SLAMS) in the foreshock of the planet Venus. Three monolithic magnetic field spikes were observed by the Venus Express on the 11th of April 2009. The structures were approx.1.5->11s in duration, had magnetic compression ratios between approx.3->6, and exhibited elliptical polarization. These characteristics are consistent with the SLAMS observed at Earth, Jupiter, and Comet Giacobini-Zinner, and thus we hypothesize that it is possible SLAMS may be found at any celestial body with a foreshock

    Data sharing in neuroimaging research

    Get PDF
    Significant resources around the world have been invested in neuroimaging studies of brain function and disease. Easier access to this large body of work should have profound impact on research in cognitive neuroscience and psychiatry, leading to advances in the diagnosis and treatment of psychiatric and neurological disease. A trend toward increased sharing of neuroimaging data has emerged in recent years. Nevertheless, a number of barriers continue to impede momentum. Many researchers and institutions remain uncertain about how to share data or lack the tools and expertise to participate in data sharing. The use of electronic data capture (EDC) methods for neuroimaging greatly simplifies the task of data collection and has the potential to help standardize many aspects of data sharing. We review here the motivations for sharing neuroimaging data, the current data sharing landscape, and the sociological or technical barriers that still need to be addressed. The INCF Task Force on Neuroimaging Datasharing, in conjunction with several collaborative groups around the world, has started work on several tools to ease and eventually automate the practice of data sharing. It is hoped that such tools will allow researchers to easily share raw, processed, and derived neuroimaging data, with appropriate metadata and provenance records, and will improve the reproducibility of neuroimaging studies. By providing seamless integration of data sharing and analysis tools within a commodity research environment, the Task Force seeks to identify and minimize barriers to data sharing in the field of neuroimaging

    Observations of whistler mode waves with nonlinear parallel electric fields near the dayside magnetic reconnection separatrix by the Magnetospheric Multiscale mission

    Get PDF
    We show observations from the Magnetospheric Multiscale (MMS) mission of whistler mode waves in the Earth's low-latitude boundary layer (LLBL) during a magnetic reconnection event. The waves propagated obliquely to the magnetic field toward the X line and were confined to the edge of a southward jet in the LLBL. Bipolar parallel electric fields interpreted as electrostatic solitary waves (ESW) are observed intermittently and appear to be in phase with the parallel component of the whistler oscillations. The polarity of the ESWs suggests that if they propagate with the waves, they are electron enhancements as opposed to electron holes. The reduced electron distribution shows a shoulder in the distribution for parallel velocities between 17,000 and 22,000 km/s, which persisted during the interval when ESWs were observed, and is near the phase velocity of the whistlers. This shoulder can drive Langmuir waves, which were observed in the high-frequency parallel electric field data

    Activity-dependent Golgi satellite formation in dendrites reshapes the neuronal surface glycoproteome

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Govind, A. P., Jeyifous, O., Russell, T. A., Yi, Z., Weigel, A., Ramaprasad, A., Newell, L., Ramos, W., Valbuena, F. M., Casler, J. C., Yan, J.-Z., Glick, B. S., Swanson, G. T., Lippincott-Schwartz, J., & Green, W. N. Activity-dependent Golgi satellite formation in dendrites reshapes the neuronal surface glycoproteome. Elife, 10, (2021): e68910, https://doi.org/10.7554/eLife.68910.Activity-driven changes in the neuronal surface glycoproteome are known to occur with synapse formation, plasticity, and related diseases, but their mechanistic basis and significance are unclear. Here, we observed that N-glycans on surface glycoproteins of dendrites shift from immature to mature forms containing sialic acid in response to increased neuronal activation. In exploring the basis of these N-glycosylation alterations, we discovered that they result from the growth and proliferation of Golgi satellites scattered throughout the dendrite. Golgi satellites that formed during neuronal excitation were in close association with endoplasmic reticulum (ER) exit sites and early endosomes and contained glycosylation machinery without the Golgi structural protein, GM130. They functioned as distal glycosylation stations in dendrites, terminally modifying sugars either on newly synthesized glycoproteins passing through the secretory pathway or on surface glycoproteins taken up from the endocytic pathway. These activities led to major changes in the dendritic surface of excited neurons, impacting binding and uptake of lectins, as well as causing functional changes in neurotransmitter receptors such as nicotinic acetylcholine receptors. Neural activity thus boosts the activity of the dendrite’s satellite micro-secretory system by redistributing Golgi enzymes involved in glycan modifications into peripheral Golgi satellites. This remodeling of the neuronal surface has potential significance for synaptic plasticity, addiction, and disease.This work was financially supported by NIH RO1 DA035430, DA044760, and DA043361 (WNG) R01 GM104010 (BSG), T32 GM007183 (FV), and Peter F McManus Foundation (WNG)
    corecore