72 research outputs found

    Plant Functional Traits Are the Mediators in Regulating Effects of Abiotic Site Conditions on Aboveground Carbon Stock-Evidence From a 30 ha Tropical Forest Plot

    Get PDF
    Understanding the relative contribution of abiotic and biotic factors to the formation of ecosystem functioning across scales is vital to evaluate ecosystem services. Here, we elucidate the effects of abiotic site conditions (i.e., soil and topographic properties) and plant functional traits on variations of stand aboveground carbon (AGC) stock in an old-growth tropical montane rain forest. The response-effect framework in functional ecology is adopted in examining how plant functional traits respond to environmental changes and affect ecosystem functioning. We measured specific leaf area and wood density of 270 woody plant species and estimated stand AGC stocks in a 30-ha forest plot. The relationships among environmental factors (ENVIRONMENT), community-weighted means of functional traits (TRAITS) and stand AGC stocks across nested spatial scales were disentangled by structural equation modeling. The results showed that the stands composed of ‘acquisitive’ species (high specific leaf area and low wood density) had low AGC, whereas stands composed of ‘conservative’ species (low specific leaf area and high wood density) had high AGC. TRAITS responded to ENVIRONMENT and affected AGC directly. ENVIRONMENT had an indirect effect on AGC through its direct effect on TRAITS. TRAITS were more important than ENVIRONMENT in driving variations of AGC. The effects of TRAITS on AGC increased, while the effects of ENVIRONMENT on AGC decreased with the increase of spatial scales in the tropical montane rain forest. Our study suggests that plant functional traits are the mediators in regulating effects of abiotic site conditions on ecosystem functions

    Employing a novel bioelastomer to toughen polylactide

    Get PDF
    Biodegradable, biocompatible polylactide (PLA) synthesized from renewable resources has attracted extensive interests over the past decades and holds great potential to replace many petroleum-derived plastics. With no loss of biodegradability and biocompatibility, we highly toughened PLA using a novel bioelastomer (BE)–synthesized from biomass diols and diacids. Although PLA and BE are immiscible, BE particles of ∌1 ÎŒm in diameter are uniformly dispersed in the matrix, and this indicates some compatibility between PLA and BE. BE significantly increased the cold crystallization ability of PLA, which was valuable for practical processing and performance. SEM micrographs of fracture surface showed a brittle-to-ductile transition owing to addition of BE. At 11.5 vol%, notched Izod impact strength improved from 2.4 to 10.3 kJ/m2, 330% increment; the increase is superior to previous toughening effect by using petroleum-based tougheners

    The global abundance of tree palms

    Get PDF
    Aim Palms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change. Location Tropical and subtropical moist forests. Time period Current. Major taxa studied Palms (Arecaceae). Methods We assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≄10 cm diameter at breast height) abundance relative to co‐occurring non‐palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure. Results On average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long‐term climate stability. Life‐form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non‐tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above‐ground biomass, but the magnitude and direction of the effect require additional work. Conclusions Tree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests

    EFFECTS OF ENVIRONMENTAL VARIATION AND SPATIAL DISTANCE ON THE BETA DIVERSITY OF WOODY PLANT FUNCTIONAL GROUPS IN A TROPICAL FOREST

    No full text
    Tropical forests are among the most complex ecosystems on Earth. The high alpha-diversity of tropical forests has been amply documented, however, beta diversity, equally important for us to understand the mechanism of biodiversity maintenance, has seldom been studied. The main current hypotheses about the origin of beta diversity are as follows: (1) species composition is uniform over large areas; (2) species composition fluctuates in a random, auto-correlated way emphasizing spatially limited dispersal; (3) species composition is related to environmental conditions. Testing these hypotheses is important to understand ecosystem function and to manage ecosystems effectively. In this study, we quantified the relative influence of environmental variation and spatial distance on the beta diversity of woody plant functional groups in a tropical forest of Hainan Island, China. Floristic and environmental data were collected from 135 grid-sample plots. We classified woody plant functional groups based on frequency, growth forms and successional status, respectively. To see whether environmental variation and spatial distance influence beta diversity, the simple and partial Mantel tests, in conjunction with linear and spline regression models were performed. The results showed that environmental heterogeneity and spatial distance were the primary determinants of pair-wise species composition differences between plots in the study area. Common, tree and climax species were more sensitive than the others to changes in environmental heterogeneity and spatial distance. Except for rare, pioneer and shrub species, the others had apparently negative relationship between spatial distance and similarity. The distance decay of similarity was determined by joint influences of spatial distance and spatially-structured environmental variables. Spatial distance had the clearest effect on beta diversity at distances <15 km and with the increase in spatial distance, beta diversity was gradually controlled by environmental heterogeneity. This study provides further support for neutral theory and environmental control hypothesis as opposed to uniformly distributed hypothesis.Tropical forests are among the most complex ecosystems on Earth. The high alpha-diversity of tropical forests has been amply documented, however, beta diversity, equally important for us to understand the mechanism of biodiversity maintenance, has seldom been studied. The main current hypotheses about the origin of beta diversity are as follows: (1) species composition is uniform over large areas; (2) species composition fluctuates in a random, auto-correlated way emphasizing spatially limited dispersal; (3) species composition is related to environmental conditions. Testing these hypotheses is important to understand ecosystem function and to manage ecosystems effectively

    Preparation of Bio-Based Polyamide Elastomer by Using Green Plasticizers

    No full text
    The purpose of this work was to study the effects of three green plasticizers H2O, glycerol, and soybean oil, on the properties of bio-based BDIS polyamides. The BDIS polyamides synthesized from the following biomass monomers: 1,4-butanediamine (BD), 1,10-decanediamine (DD), itaconic acid (IA), and sebacic acid (SA). It is interesting to note that the amorphous BDIS (IA-80%) polyamide was changed from the glassy state to the rubbery state after water soaking and induced crystallization at the same time. The H2O-plasticized non-crosslinked BDIS (IA-80%) polyamides can be very useful for the preparation of physical water gel. The glycerol- and soybean oil-plasticized BDIS (IA-80%) polyamides displayed excellent toughness. The plasticized BDIS (IA-80%) polyamides were characterized by Fouriertransform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), mechanical testing, and X-ray diffraction (XRD)

    Itaconate Based Elastomer as a Green Alternative to Styrene–Butadiene Rubber for Engineering Applications: Performance Comparison

    No full text
    In response to increasingly stringent requirements for the sustainability and environmental friendliness of the rubber industry, the application and development of bio-based elastomers have received extensive attention. In this work, we prepared a new type of bio-based elastomer poly(dibutyl itaconate-butadiene) copolymer (PDBIB) nanocomposite using carbon black and non-petroleum-based silica with a coupling agent. Using dynamic thermodynamic analysis (DMTA) and scanning electron microscope (SEM), we studied the effects of feed ratio on dynamic mechanical properties, micro morphology, and filler dispersion of PDBIB composites. Among them, silica-reinforced PDBIB60 (weight ratio of dibutyl itaconate to butadiene 40/60) and carbon black-reinforced PDBIB70 (weight ratio of dibutyl itaconate to butadiene 30/70) both showed excellent performance, such as tensile strength higher than 18 MPa and an elongation break higher than 400%. Compared with the widely used ESBR, the results showed that PDBIB had better rolling resistance and heat generation than ESBR. In addition, considering the development of green tires, we compared it with the solution polymerized styrene&ndash;butadiene rubber with better comprehensive performance, and analyzed the advantages of PDBIB and the areas to be improved. In summary, PDBIB prepared from bio-based monomers had superior performance and is of great significance for achieving sustainable development, providing a direction for the development of high-performance green tire and holding great potential to replace petroleum-derived elastomers

    Synthesis and characterization of novel soybean-oil-based elastomers with favorable processability and tunable properties

    No full text
    A new series of soybean-oil-based elastomers poly(epoxidized soybean oil-co-decamethylene diamine)(PESD) was synthesized by ring-opening polymerization from epoxidized soybean oil (ESO) and decamethylene diamine (DDA) in different molar ratios. The effect of the molar ratio on the structure and properties of PESD was identified by various methods. According to the results of Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (1H NMR) and thermogravimetry (TGA), the glycerol center of ESO was broken by ammonolysis as expected in the process of polymerization, which resulted in un-cross-linked elastomers with low glass transition temperatures (Tg) ranging from −30 to −17 °C. PESD-3(molar ratio of DDA to ESO is 2:1) was found to have the highest molecular weight and was most suitable for further processing. Then, PESD-3 was successfully cross-linked through succinic anhydride by a general rubber processing method to obtain a crosslinked bioelastomer. The mechanism of chain growth, ammonolysis of ester group, and cross-linking of PESD-3 was studied. The tensile strength of cross-linked PESD could be flexibly adjusted from 0.8 to 8.5 MPa by using different amounts of succinic anhydride without reinforcing fillers. The final bioelastomer possesses good damping property, low water absorption, and low degradation rate in phosphate buffer solution. These properties indicate potential engineering applications

    Preparation and Properties of Novel Thermoplastic Vulcanizate Based on Bio-Based Polyester/Polylactic Acid, and Its Application in 3D Printing

    No full text
    Thermoplastic vulcanizate (TPV) combines the high elasticity of elastomers and excellent processability of thermoplastics. Novel bio-based TPV based on poly (lactide) (PLA) and poly (1,4-butanediol/2,3-butanediol/succinate/itaconic acid) (PBBSI) were prepared in this research. PBBSI copolyesters were synthesized by melting polycondensation, and the molecular weights, chemical structures and compositions of the copolyesters were characterized by GPC, NMR and FTIR. Bio-based 2,3-butanediol was successfully incorporated to depress the crystallization behavior of the PBBSI copolyester. With an increase of 2,3-butanediol content, the PBBSI copolyester transformed from a rigid plastic to a soft elastomer. Furthermore, the obtained TPV has good elasticity and rheological properties, which means it can be applied as a 3D-printing material

    Mechanical dependence of 3D-printed thermoplastic polyurethane reinforced with minor continuous carbon fibres

    No full text
    Mechanical dependence of 3D-printed thermoplastic polyurethane (TPU) reinforced with continuous carbon fibres (CCFs) on the selected printing conditions was investigated. The melt-extrusion-based 3D-printing (ME3DP) method was employed to fabricate specimens, of which the dependence of tensile, flexural and cryo-impact properties on layer thickness, printing speed and layer number was evaluated. Results showed that the printed TPU reinforced with raw CCFs revealed an over five-fold increase in tensile yield stress with the occurrence of necking phenomenon whereas those reinforced with preimpregnated CCFs (PCCFs) displayed brittle fracture which was also confirmed by the impact testing. The flexural strength and modulus of the printed CCFs/TPU were greatly raised over that of TPU and the PCCFs provided a much more enhancement. Both the increased yield stress and flexural strength implied an improved capacity for dynamic load bearing. Finally, the structure–property relationship was established via interface microstructure detection and simulation
    • 

    corecore