39 research outputs found

    Alternating Tree Automata with Qualitative Semantics

    Get PDF
    We study alternating automata with qualitative semantics over infinite binary trees: Alternation means that two opposing players construct a decoration of the input tree called a run, and the qualitative semantics says that a run of the automaton is accepting if almost all branches of the run are accepting. In this article, we prove a positive and a negative result for the emptiness problem of alternating automata with qualitative semantics. The positive result is the decidability of the emptiness problem for the case of BĂŒchi acceptance condition. An interesting aspect of our approach is that we do not extend the classical solution for solving the emptiness problem of alternating automata, which first constructs an equivalent non-deterministic automaton. Instead, we directly construct an emptiness game making use of imperfect information. The negative result is the undecidability of the emptiness problem for the case of co-BĂŒchi acceptance condition. This result has two direct consequences: The undecidability of monadic second-order logic extended with the qualitative path-measure quantifier and the undecidability of the emptiness problem for alternating tree automata with non-zero semantics, a recently introduced probabilistic model of alternating tree automata

    Alternating Tree Automata with Qualitative Semantics

    Get PDF
    International audienceWe study alternating automata with qualitative semantics over infinite binary trees: Alternation means that two opposing players construct a decoration of the input tree called a run, and the qualitative semantics says that a run of the automaton is accepting if almost all branches of the run are accepting. In this article, we prove a positive and a negative result for the emptiness problem of alternating automata with qualitative semantics.The positive result is the decidability of the emptiness problem for the case of BĂŒchi acceptance condition. An interesting aspect of our approach is that we do not extend the classical solution for solving the emptiness problem of alternating automata, which first constructs an equivalent non-deterministic automaton. Instead, we directly construct an emptiness game making use of imperfect information.The negative result is the undecidability of the emptiness problem for the case of co-BĂŒchi acceptance condition. This result has two direct consequences: the undecidability of monadic second-order logic extended with the qualitative path-measure quantifier and the undecidability of the emptiness problem for alternating tree automata with non-zero semantics, a recently introduced probabilistic model of alternating tree automata
    corecore