103 research outputs found
Optimizing the colour and fabric of targets for the control of the tsetse fly Glossina fuscipes fuscipes
Background:
Most cases of human African trypanosomiasis (HAT) start with a bite from one of the subspecies of Glossina fuscipes. Tsetse use a range of olfactory and visual stimuli to locate their hosts and this response can be exploited to lure tsetse to insecticide-treated targets thereby reducing transmission. To provide a rational basis for cost-effective designs of target, we undertook studies to identify the optimal target colour.
Methodology/Principal Findings:
On the Chamaunga islands of Lake Victoria , Kenya, studies were made of the numbers of G. fuscipes fuscipes attracted to targets consisting of a panel (25 cm square) of various coloured fabrics flanked by a panel (also 25 cm square) of fine black netting. Both panels were covered with an electrocuting grid to catch tsetse as they contacted the target. The reflectances of the 37 different-coloured cloth panels utilised in the study were measured spectrophotometrically. Catch was positively correlated with percentage reflectance at the blue (460 nm) wavelength and negatively correlated with reflectance at UV (360 nm) and green (520 nm) wavelengths. The best target was subjectively blue, with percentage reflectances of 3%, 29%, and 20% at 360 nm, 460 nm and 520 nm respectively. The worst target was also, subjectively, blue, but with high reflectances at UV (35% reflectance at 360 nm) wavelengths as well as blue (36% reflectance at 460 nm); the best low UV-reflecting blue caught 3× more tsetse than the high UV-reflecting blue.
Conclusions/Significance:
Insecticide-treated targets to control G. f. fuscipes should be blue with low reflectance in both the UV and green bands of the spectrum. Targets that are subjectively blue will perform poorly if they also reflect UV strongly. The selection of fabrics for targets should be guided by spectral analysis of the cloth across both the spectrum visible to humans and the UV region
Advances in Distinguishing Groundwater Influenced by Oil Sands Process-Affected Water (OSPW) from Natural Bitumen-Influenced Groundwater
The objective of this study was to advance analytical methods for detecting oil sands process-affected water (OSPW) seepage from mining containments and discriminating any such seepage from the natural bitumen background in groundwaters influenced by the Alberta McMurray formation. Improved sampling methods and quantitative analyses of two groups of monoaromatic acids were employed to analyze OSPW and bitumen-affected natural background groundwaters for source discrimination. Both groups of monoaromatic acids showed significant enrichment in OSPW, while ratios of O /O containing heteroatomic ion classes of acid extractable organics (AEOs) did not exhibit diagnostic differences. Evaluating the monoaromatic acids to track a known plume of OSPW-affected groundwater confirmed their diagnostic abilities. A secondary objective was to assess anthropogenically derived artificial sweeteners and per- and polyfluoroalkyl substances (PFAS) as potential tracers for OSPW. Despite the discovery of acesulfame and PFAS in most OSPW samples, trace levels in groundwaters influenced by general anthropogenic activities preclude them as individual robust tracers. However, their inclusion with the other metrics employed in this study served to augment the tiered, weight of evidence methodology developed. This methodology was then used to confirm earlier findings of OSPW migrations into groundwater reaching the Athabasca River system adjacent to the reclaimed pond at Tar Island Dyke
Auroral Current and Electrodynamics Structure Measured by Two SOunding Rockets in Flight Simultaneously
On January 29, 2009, two identically instrumented sounding rockets were launched into a sub-storm auroral arc from Poker Flat Alaska. Labeled the Auroral Currents and Electrodynamics Structure (ACES) mission, the payloads were launched to different apogees (approx.350km and approx.120km) and staggered in time so as to optimize their magnetic conjunctions. The different altitudes provided simultaneous in-situ measurements of magnetospheric input and output to the ionosphere and the ionospheric response in the lower F and E region. Measurements included 3-axis magnetic field, 2-axis electric field nominally perpendicular to the magnetic field, energetic particles, electron and ion, up to 15keV, cold plasma temperature and density. In addition, PFISR was also operating in a special designed mode to measure electric field and density profiles in the plane defined by the rocket trajectories and laterally to either side of the trajectories. Observation of the measured currents and electrodynamics structure of the auroral form encountered are presented in the context of standard auroral models and the temporal/spatial limitations of mission designs
Risk Factors for and Clinical Outcome of Congenital Cytomegalovirus Infection in a Peri-Urban West-African Birth Cohort
BACKGROUND: Congenital cytomegalovirus (CMV) infection is the most prevalent congenital infection worldwide. Epidemiology and clinical outcomes are known to vary with socio-economic background, but few data are available from developing countries, where the overall burden of infectious diseases is frequently high. METHODOLOGY/PRINCIPAL FINDINGS: As part of an ongoing birth cohort study in The Gambia among term infants, urine samples were collected at birth and tested by PCR for the presence of CMV DNA. Risk factors for transmission and clinical outcome were assessed, including placental malaria infection. Babies were followed up at home monthly for morbidity and anthropometry, and at one year of age a clinical evaluation was performed. The prevalence of congenital CMV infection was 5.4% (40/741). A higher prevalence of hepatomegaly was the only significant clinical difference at birth. Congenitally infected children were more often first born babies (adjusted odds ratio (OR) 5.3, 95% confidence interval (CI) 2.0-13.7), more frequently born in crowded compounds (adjusted OR 2.9, 95%CI 1.0-8.3) and active placental malaria was more prevalent (adjusted OR 2.9, 95%CI 1.0-8.4). These associations were corrected for maternal age, bed net use and season of birth. During the first year of follow up, mothers of congenitally infected children reported more health complaints for their child. CONCLUSIONS/SIGNIFICANCE: In this study, the prevalence of congenital CMV among healthy neonates was much higher than previously reported in industrialised countries, and was associated with active placental malaria infection. There were no obvious clinical implications during the first year of life. The effect of early life CMV on the developing infant in the Gambia could be mitigated by environmental factors, such as the high burden of other infections.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe
Maintenance of Large Subpopulations of Differentiated CD8 T-Cells Two Years after Cytomegalovirus Infection in Gambian Infants
BACKGROUND: In a previously published study, we found that large differentiated subpopulations of CD8 T-cells emerged rapidly after CMV infection in young infants and persisted throughout the following year. Here we describe a follow-up study conducted on the same infants to establish whether the differentiated subpopulations continued through the second year post-infection. METHODOLOGY / PRINCIPAL FINDINGS: CMV-specific cells identified using tetramers remained more activated and differentiated than the overall CD8 population. The large subpopulation of differentiated cytotoxic (CD28(-)CD62L(-)Bcl-2(low)CD95(+)perforin(+)) cells that emerged rapidly after infection remained stable after two years. No similar subpopulation was found in CMV-uninfected infants indicating that two years after infection, CMV remained a major factor in driving CD8 T-cell differentiation. Although markers of activation (CD45R0 and HLA-D) declined throughout the first year, HLA-D expression continued to decline during the second year and CD45R0 expression increased slightly. The age-related increase in IFNgamma response observed during the first year continued but was non-significant during the second year, indicating that the rate of functional improvement had slowed substantially. CONCLUSIONS / SIGNIFICANCE: The large differentiated subpopulations of CD8 T-cells that had emerged immediately after CMV infection persisted through the second year post-infection, while levels of activation and functional capacity remained fairly constant.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe
Surface rupture of multiple crustal faults in the 2016 Mw 7.8 Kaikōura, New Zealand, earthquake
Multiple (>20
>20
) crustal faults ruptured to the ground surface and seafloor in the 14 November 2016 M w
Mw
7.8 Kaikōura earthquake, and many have been documented in detail, providing an opportunity to understand the factors controlling multifault ruptures, including the role of the subduction interface. We present a summary of the surface ruptures, as well as previous knowledge including paleoseismic data, and use these data and a 3D geological model to calculate cumulative geological moment magnitudes (M G w
MwG
) and seismic moments for comparison with those from geophysical datasets. The earthquake ruptured faults with a wide range of orientations, sense of movement, slip rates, and recurrence intervals, and crossed a tectonic domain boundary, the Hope fault. The maximum net surface displacement was ∼12 m
∼12 m
on the Kekerengu and the Papatea faults, and average displacements for the major faults were 0.7–1.5 m south of the Hope fault, and 5.5–6.4 m to the north. M G w
MwG
using two different methods are M G w
MwG
7.7 +0.3 −0.2
7.7−0.2+0.3
and the seismic moment is 33%–67% of geophysical datasets. However, these are minimum values and a best estimate M G w
MwG
incorporating probable larger slip at depth, a 20 km seismogenic depth, and likely listric geometry is M G w
MwG
7.8±0.2
7.8±0.2
, suggests ≤32%
≤32%
of the moment may be attributed to slip on the subduction interface and/or a midcrustal detachment. Likely factors contributing to multifault rupture in the Kaikōura earthquake include (1) the presence of the subduction interface, (2) physical linkages between faults, (3) rupture of geologically immature faults in the south, and (4) inherited geological structure. The estimated recurrence interval for the Kaikōura earthquake is ≥5,000–10,000 yrs
≥5,000–10,000 yrs
, and so it is a relatively rare event. Nevertheless, these findings support the need for continued advances in seismic hazard modeling to ensure that they incorporate multifault ruptures that cross tectonic domain boundaries
Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States
Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multimodel ensemble forecast that combined predictions from dozens of groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naïve baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-wk horizon three to five times larger than when predicting at a 1-wk horizon. This project underscores the role that collaboration and active coordination between governmental public-health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks
The genetic architecture of the human cerebral cortex
The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
The United States COVID-19 Forecast Hub dataset
Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages
Recommended from our members
Effect of Hydrocortisone on Mortality and Organ Support in Patients With Severe COVID-19: The REMAP-CAP COVID-19 Corticosteroid Domain Randomized Clinical Trial.
Importance: Evidence regarding corticosteroid use for severe coronavirus disease 2019 (COVID-19) is limited. Objective: To determine whether hydrocortisone improves outcome for patients with severe COVID-19. Design, Setting, and Participants: An ongoing adaptive platform trial testing multiple interventions within multiple therapeutic domains, for example, antiviral agents, corticosteroids, or immunoglobulin. Between March 9 and June 17, 2020, 614 adult patients with suspected or confirmed COVID-19 were enrolled and randomized within at least 1 domain following admission to an intensive care unit (ICU) for respiratory or cardiovascular organ support at 121 sites in 8 countries. Of these, 403 were randomized to open-label interventions within the corticosteroid domain. The domain was halted after results from another trial were released. Follow-up ended August 12, 2020. Interventions: The corticosteroid domain randomized participants to a fixed 7-day course of intravenous hydrocortisone (50 mg or 100 mg every 6 hours) (n = 143), a shock-dependent course (50 mg every 6 hours when shock was clinically evident) (n = 152), or no hydrocortisone (n = 108). Main Outcomes and Measures: The primary end point was organ support-free days (days alive and free of ICU-based respiratory or cardiovascular support) within 21 days, where patients who died were assigned -1 day. The primary analysis was a bayesian cumulative logistic model that included all patients enrolled with severe COVID-19, adjusting for age, sex, site, region, time, assignment to interventions within other domains, and domain and intervention eligibility. Superiority was defined as the posterior probability of an odds ratio greater than 1 (threshold for trial conclusion of superiority >99%). Results: After excluding 19 participants who withdrew consent, there were 384 patients (mean age, 60 years; 29% female) randomized to the fixed-dose (n = 137), shock-dependent (n = 146), and no (n = 101) hydrocortisone groups; 379 (99%) completed the study and were included in the analysis. The mean age for the 3 groups ranged between 59.5 and 60.4 years; most patients were male (range, 70.6%-71.5%); mean body mass index ranged between 29.7 and 30.9; and patients receiving mechanical ventilation ranged between 50.0% and 63.5%. For the fixed-dose, shock-dependent, and no hydrocortisone groups, respectively, the median organ support-free days were 0 (IQR, -1 to 15), 0 (IQR, -1 to 13), and 0 (-1 to 11) days (composed of 30%, 26%, and 33% mortality rates and 11.5, 9.5, and 6 median organ support-free days among survivors). The median adjusted odds ratio and bayesian probability of superiority were 1.43 (95% credible interval, 0.91-2.27) and 93% for fixed-dose hydrocortisone, respectively, and were 1.22 (95% credible interval, 0.76-1.94) and 80% for shock-dependent hydrocortisone compared with no hydrocortisone. Serious adverse events were reported in 4 (3%), 5 (3%), and 1 (1%) patients in the fixed-dose, shock-dependent, and no hydrocortisone groups, respectively. Conclusions and Relevance: Among patients with severe COVID-19, treatment with a 7-day fixed-dose course of hydrocortisone or shock-dependent dosing of hydrocortisone, compared with no hydrocortisone, resulted in 93% and 80% probabilities of superiority with regard to the odds of improvement in organ support-free days within 21 days. However, the trial was stopped early and no treatment strategy met prespecified criteria for statistical superiority, precluding definitive conclusions. Trial Registration: ClinicalTrials.gov Identifier: NCT02735707
- …