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Abstract

Background: Most cases of human African trypanosomiasis (HAT) start with a bite from one of the subspecies of Glossina
fuscipes. Tsetse use a range of olfactory and visual stimuli to locate their hosts and this response can be exploited to lure
tsetse to insecticide-treated targets thereby reducing transmission. To provide a rational basis for cost-effective designs of
target, we undertook studies to identify the optimal target colour.

Methodology/Principal Findings: On the Chamaunga islands of Lake Victoria , Kenya, studies were made of the numbers of
G. fuscipes fuscipes attracted to targets consisting of a panel (25 cm square) of various coloured fabrics flanked by a panel
(also 25 cm square) of fine black netting. Both panels were covered with an electrocuting grid to catch tsetse as they
contacted the target. The reflectances of the 37 different-coloured cloth panels utilised in the study were measured
spectrophotometrically. Catch was positively correlated with percentage reflectance at the blue (460 nm) wavelength and
negatively correlated with reflectance at UV (360 nm) and green (520 nm) wavelengths. The best target was subjectively
blue, with percentage reflectances of 3%, 29%, and 20% at 360 nm, 460 nm and 520 nm respectively. The worst target was
also, subjectively, blue, but with high reflectances at UV (35% reflectance at 360 nm) wavelengths as well as blue (36%
reflectance at 460 nm); the best low UV-reflecting blue caught 36more tsetse than the high UV-reflecting blue.

Conclusions/Significance: Insecticide-treated targets to control G. f. fuscipes should be blue with low reflectance in both the
UV and green bands of the spectrum. Targets that are subjectively blue will perform poorly if they also reflect UV strongly.
The selection of fabrics for targets should be guided by spectral analysis of the cloth across both the spectrum visible to
humans and the UV region.
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Introduction

Tsetse flies (Glossina spp.) are restricted to sub-Saharan Africa

where they transmit the trypanosomes causing the diseases of

nagana in livestock and sleeping sickness, also known as human

African trypanosomiasis (HAT), in humans. Tsetse are commonly

divided into three groups: i) the Morsitans group (savannah species)

which are the main vectors of the trypanosomes causing nagana; ii)

the Palpalis group (riverine species) which are largely responsible for

transmission of Trypanosoma brucei spp, the causative agents of HAT,

and iii) the Fusca group (forest species) which currently are usually

only minor vectors. There is no vaccine against trypanosomiasis,

and the use of drugs is limited by problems of toxicity and resistance

[1]. This, in addition to the fact that there are no prophylactic drugs

available for humans, makes vector control particularly important.

Given the distributions of tsetse vectors [2] and the incidence of

HAT [3,4,5], it seems that at least 90% of all cases of HAT are

transmitted by the subspecies of Glossina fuscipes (Palpalis group).

One of the most important methods of tsetse control is the use of

stationary artificial baits, represented either by three-dimensional

traps or, more cost-effectively, by two-dimensional cloth screens

(targets) that are treated with insecticide [6]. Most of the work on

the optimisation of target design has been performed with tsetse

other than G. fuscipes, especially with the savannah species G.

morsitans morsitans and G. pallidipes and the riverine species G. palpalis

palpalis and G. tachinoides [7,8,9]. For these tsetse species the most

effective target consists of black and/or phthalogen blue panels of

cotton cloth, which traditionally have been used to make a target

of about 161 m. The colour ‘‘phthalogen blue’’ produced by

colouring processes based on pigment blue 15 (copper phthalo-

cyanine) or its solubilized derivatives (turquoise blue) appears to be

the optimal colour. This has been demonstrated in detailed
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comparisons of traps, fabrics, dyes and paints [10,11]. Unfortu-

nately, the most convenient locally-available blue fabric for tsetse

applications, phthalogen blue cotton, has been difficult to obtain

since the mid 1990’s. Recently we have shown that for all

subspecies of G. fuscipes, for G. tachinoides and G. palpalis gambiensis,

but not for G. m. morsitans and G. pallidipes [12], the cost-

effectiveness of a target can be improved several fold by using only

phthalogen blue cloth, reducing its size by about 94%, to become

25625 cm, and by adding a panel of fine black polyester netting of

the same size [13,14]. The distinctive optimum size of targets for

Palpalis group flies suggests that targets for this group might also

have a distinctive optimum colour. Moreover, even if blue panels

were confirmed to be best for this group, it might be beneficial to

opt for a fabric other than phthalogen blue cotton [10,11] because

of its limited availability. Polyester fabrics in particular have great

potential as they are more suitable in most technical respects than

cotton and can be produced cheaply. Under outdoor conditions

polyester lasts about four times longer than cotton [15], which is

particularly affected by UV degradation [15], mildew [16] and rot

[17]. Colour fastness is easier to achieve in polyesters [18] and the

amount of insecticide needed to impregnate polyester is less than

for cotton [19]. Furthermore, polyester is easier to transport

because it weighs less than cotton.

The present paper reports screening tests for the attractiveness

of various colours and types of fabric in small cloth-and-net targets

for G. f. fuscipes, one of the two most important vectors of sleeping

sickness.

Materials and Methods

Targets and fabrics
Targets consisted of a 25625 cm panel of cloth flanked by the

same-sized panel of fine black polyester netting (Quality no. 166,

Swisstulle, Nottingham, UK). Various materials, obtained from

different sources, were used for the cloth panel. Phthalogen blue

cotton (Phthalogen blue C) (used as the standard) and black

cotton (Black 1) were already available at the research station and

were from the same stocks used in previous studies of target

design [13]. All other cotton materials (Brown, Orange, Red 1–2,

Green 1–3, Yellow 1, Grey 1–2, Purple 1 and White 1) were

bought in a textile shop in Sweden. The white cotton cloth (White

1) was washed with household bleach (KlorinT, Colgate-

Palmolive, active ingredient: sodium hypochlorite) to create a

material with high reflectance in the UV-region (supplementary

Fig. S1 and S2). A black polyester (Black 2) and two blue

polyester (Blue 7 and 8 called Phthalogen blue and Royal blue

respectively by Vestergaard Frandsen Ltd, Lausanne (VF)) panels

were made from materials identical to those used in the tsetse

traps and targets produced by VF. The material called

Phthalogen blue polyester by Vestergaard is dyed with a blue

dye to create a polyester cloth of a colour similar to phthalogen

blue cotton but it was not dyed with phthalogen blue dye which

can only be used on cotton material. In addition, VF supplied

polyester materials that were blue (Blue 2–6), purple (Purple 3–8),

white (White 3) and yellow (Yellow 2). These polyester materials

differed in weight, gloss and weave. Another seven polyester

materials (Blue 9–13, Purple 2, White 2) were produced at the

Centre for Technical Textiles, University of Leeds, by applying

dyes (Appendix 1) to 100% polyester fabric (matt, texturized;

knitted; 150 denier; 36 filaments; weight 114 g m22) supplied by

VF.

A total of 37 different materials were used. Their reflectance

spectra were measured at the Danish technological service institute

(http://www.dhigroup.com) on a Shimadzu dual beam photom-

eter, from 190–900 nm at 10 nm intervals (supplementary Fig.

S1).

Catches and analyses
Studies were performed from February to December 2009 on

Chamaunga Island (0.5 km2) (0u 259S, 34u139E), Lake Victoria,

Kenya, using targets in which the cloth and netting panels were

each covered on both sides with an electrocuting grid of fine black

wires [20]. Tsetse knocked down by the grids fell into a tray of

soapy water below each panel. In this way the catch from each

panel could be recorded separately.

Fifteen separate experiments (supplementary Fig. S2) were

conducted between 09.00 and 13.00 h, when G. f. fuscipes is most

active [21,22]. Each experiment involved five targets with different

coloured cloth panels, which were compared in two blocks of Latin

squares of 5 days 65 sites, with sites at least 50 m apart. This

produced a total of 10 daily replicates with each target. The sites

were the same throughout the 15 experiments: none of the sites

was shaded by vegetation and all targets were oriented the same

way relative to the sun. All experiments were performed under dry

conditions. The combined daily catch of the cloth and net panels

(n) was transformed to log (n+1) for analysis of variance, the

significance of differences between means being assessed by

Tukey’s Honest Significant Difference (HSD) test. All data analysis

were performed using R [23]. Each experiment employed a target

with Phthalogen blue C cloth as a standard, and the catches with

the other targets were expressed as a proportion of the standard

catch, to give a ‘catch index’. Thus a target that caught, say, twice

as many tsetse as the standard would have a catch index of 2.0,

and a target that caught only half that of the standard would have

a catch index of 0.5.

Following earlier work [7,8] we also assessed the effect of colour

on landing response by comparing the proportion of the total

catch taken from the coloured panel. The proportion is termed the

‘landing score’. The results were subjected to logistic regression

with binomial errors using the statistical package R [23]. The

catch of tsetse from (i) the target only and (ii) the target +flanking

net were specified as the dependent variable and binomial

denominator, respectively. Explanatory variables were the target

colour, site and day. The significance of changes in deviance was

assessed by either x2 or, if the data were overdispersed, an F-test

Author Summary

Efforts to control human African trypanosomiasis (HAT)
would be strengthened by the development and applica-
tion of more cost-effective methods of controlling the
various species of tsetse fly vector. Among the most
promising approaches is the use of insecticide-treated
targets which use various olfactory and visual stimuli to
attract and kill tsetse. Following on from previous studies
of the responses of tsetse to odours and target size and
shape, we compared the numbers of G. f. fuscipes attracted
to different coloured targets. Our results show that the
attraction of tsetse is correlated positively with reflectance
in the blue region of the spectrum but negatively with the
UV- and green regions. The best blue targets attract and
kill three times more tsetse than the worst because of
different UV reflectance levels in the different blue cloths.
Hence selecting fabrics for use in targets must be based on
spectral analysis of the fabrics’ reflectance across the
spectrum visible to tsetse, which includes UV, and not
simply on the ‘rule of thumb’ that targets to control tsetse
should be blue.

Colour Affecting Target Catch of Glossina fuscipes
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following re-scaling. The landing scores (reported in table 1 and 2)

are accompanied by their sample size. For analyses of catch and

landing, the term ‘‘significant’’ implies P,0.05.

Modelling target catch as a function of spectral
reflectivities
Multiple regression analyses were done in R to examine the

relationship between the catch index and mean reflectance of all

the 37 materials utilised in this study, in four colour bands which

broadly matched those used in previous studies: 300–400 nm

(‘ultraviolet’), 410–500 nm (‘blue’), 510–600 nm (‘green’) and

610–700 nm (‘red’) [7,24]. In addition, multiple regression

analyses with percentage reflectance at four wavelengths (330,

355, 460 and 520 nm) as explanatory variables were performed.

Tsetse flies, like most higher flies, are believed to possess four

photoreceptor types in their eyes. These four wavelengths were

selected as being representative of the peak sensitivities of the four

photoreceptor types, as indicated by previous studies [25,26].

Therefore they provide a measure of the stimulation of each

photoreceptor by the 37 different fabric panels, which can be

evaluated individually and relative to the other receptors, as in fly

Table 1. Catch index and landing score of different-coloured targets.

Catch index Landing score

Exp Colour Males Females Males Females

1 Standard 1.00 (14.4,1.1960.108) 1.00 (12.5,1.1360.084) 0.31 (157) 0.29 (137)

Brown 0.84 (12.1) ns 0.84 (10.5) ns 0.29 (143) ns 0.29 (125) ns

Red 2 0.75 (10.8) ns 0.67 (8.4) ns 0.33 (128) ns 0.29 (93) ns

Red 1 0.44 (6.3)* 0.68 (8.5) ns 0.23 (75) ns 0.20 (90) ns

Orange 0.72 (10.4) ns 0.55 (6.9) ns 0.19 (121) ns 0.21 (81) ns

2 Standard 1.00 (13.4,1.1660.069) 1.00 (18.2,1.2860.063) 0.32 (148) 0.36 (193)

White 3 0.44 (5.9)*** 0.30 (5.5)*** 0.27 (67) ns 0.26 (61) ns

Yellow 2 0.53 (7.1)** 0.32 (5.8)*** 0.36 (76) ns 0.32 (65) ns

Yellow 1 0.39 (5.2)*** 0.32 (5.8)*** 0.24 (59) ns 0.35 (63) ns

Orange 0.46 (6.2)*** 0.35 (6.4)*** 0.40 (68) ns 0.44 (68) ns

3 Standard 1.00 (22.7,1.3760.071) 1.00 (27.0,1.4560.095) 0.27 (240) 0.22 (281)

Green 1 0.43 (9.8)*** 0.38 (10.3)** 0.12 (106) * 0.11 (108) ns

Green 2 0.67 (15.2) ns 0.41 (11.1)** 0.08 (165) ** 0.08 (158) **

Green 3 0.48 (10.9)** 0.42 (11.3)** 0.08 (121) * 0.10 (149) *

Purple 1 0.85 (19.3) ns 0.47 (12.7)* 0.16 (210) * 0.11 (176) *

4 Standard 1.00 (16.6,1.2560.089) 1.00 (27.0,1.4560.061) 0.21 (184) 0.22 (289)

Blue 10 0.49 (8.1)* 0.51 (13.8)*** 0.15 (96) ns 0.13 (147) ns

Blue 12 0.69 (11.5) ns 0.48 (13.0)*** 0.16 (135) ns 0.15 (144) ns

Green 2 0.54 (9.0) ns 0.55 (14.9)** 0.20 (118) ns 0.19 (162) ns

Orange 0.52 (8.6)* 0.42 (11.3)*** 0.18 (96) ns 0.14 (125) ns

5 Standard 1.00 (14.2,1.1860.084) 1.00 (22.8,1.3860.064) 0.27 (177) 0.20 (259)

Brown 0.75 (10.7) ns 0.54 (12.3)** 0.25 (146) ns 0.32 (136) ns

Red1 0.55 (7.8) ns 0.42 (9.6)*** 0.24 (92) ns 0.18 (122) ns

Black 1 0.65 (9.2) ns 0.35 (8.0)*** 0.21 (112) ns 0.28 (94) ns

Purple 1 0.82 (11.6) ns 0.43 (9.8)*** 0.24 (142) ns 0.21 (113) ns

6 Standard 1.00 (20.7,1.3460.052) 1.00 (17.9,1.2860.055) 0.34 (228) 0.32 (189)

Black 1 0.55 (11.4)*** 0.57 (10.2)** 0.32 (116) ns 0.32 (108) ns

Grey 1 0.30 (6.2)*** 0.35 (6.3)*** 0.25 (63) ns 0.27 (64) ns

Grey 2 0.36 (7.5)*** 0.38 (6.8)*** 0.24 (78) ns 0.26 (72) ns

White 2 0.32 (6.6)*** 0.31 (5.5)*** 0.28 (71) ns 0.21 (62) ns

7 Standard 1.00 (10.3,1.0560.088) 1.00 (14.7,1.2060.090) 0.32 (123) 0.28 (165)

White 2 0.58 (6.0) ns 0.71 (10.4) ns 0.08 (83) ns 0.07 (138)**

White 1 0.82 (8.4) ns 0.45 (6.6)* 0.23 (106) ns 0.32 (82) ns

Grey 1 0.50 (5.2)* 0.45 (6.6)* 0.24 (59) ns 0.23 (73) ns

Black 2 0.85 (8.8) ns 0.85 ns (12.5) 0.21 (104) ns 0.25 (138) ns

Catch index is the detransformed mean daily catch of a target expressed as a proportion of that from the standard target (Phthalogen blue cotton). The detransformed
mean catches are shown in brackets. For the Standards only, the transformed mean catch6SED are also reported. The landing score (sample size in brackets) of each
cloth is the number landing on the target expressed as a proportion of the total number caught by the bait. Asterisks indicate that the catch index or landing score
differs from the standard at 0.05 (*), 0.01 (**) or 0.001(***) levels of probability.
doi:10.1371/journal.pntd.0001661.t001
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colour models [27]. Following earlier work [24], logs were taken of

both the target catch index and percent reflectivity as the

relationship was found to be log-linear. Explanatory variables

were removed from a model in which all terms were fitted without

any interactions. Terms that reduced deviance significantly from

the model were then used in a maximal model in which all terms

were fitted with all their interactions. Non-significant interaction

terms were removed by a series of F- tests commencing with terms

Table 2. Catch and landing score of tsetse from various blue- and purple-coloured targets.

Catch index Landing score

Exp. Colour Males Females Males Females

8 Standard 1.00 (20.0, 1.3260.062) 1.00 (19.8, 1.3260.061) 0.39 (216) 0.33 (208)

Black 1 0.49 (9.8)*** 0.47 (9.9)*** 0.30 (105) ns 0.35 (105) ns

Blue 7 0.51(10.2) *** 0.42 (8.3)*** 0.17 (112) ** 0.19 (90) *

Blue 8 0.48 (9.6)*** 0.49 (9.7)*** 0.12 (104) *** 0.11 (104) **

Black 2 0.40 (8.0)*** 0.35 (6.9)*** 0.29 (85) ns 0.24 (79) ns

9 Standard 1.00 (11.6, 1.1060.061) 1.00 (15.3, 1.2160.067) 0.45 (130) 0.37 (166)

Blue 7 0.68 (7.9) ns 0.60 (9.2)* 0.28 (85) * 0.32 (94) ns

Blue 9 0.62 (7.2)* 0.58 (8.9)* 0.33 (76) ns 0.21 (94) *

Blue 12 0.66 (7.7) ns 0.61 (9.3)* 0.26 (85) ** 0.27 (100) ns

Blue 13 0.56 (6.5)** 0.57 (8.7)* 0.29 (72)* 0.25 (101) *

10 Standard 1.00 (15.3, 1.2160.061) 1.00 (19.8, 1.3260.073) 0.36 (157) 0.25 (205)

Blue 8 0.62 (9.5)* 0.51 (10.1)** 0.19 (112) ns 0.23 (105) ns

Blue 2 0.47 (7.2)*** 0.38 (7.5)*** 0.27 (82) ns 0.39 (82) ns

Blue 3 0.47 (7.2)*** 0.46 (9.1)** 0.29 (76) ns 0.23 (99) ns

Blue 4 0.41 (6.3)*** 0.34 (6.7)*** 0.30 (70) ns 0.23 (73) ns

11 Standard 1.00 (20.7, 1.3460.079) 1.00 (29.7, 1.4960.063) 0.35 (215) 0.25 (308)

Blue 4 0.39 (8.1)*** 0.41 (12.2)*** 0.27 (86) ns 0.28 (137) ns

Blue 5 0.31 (6.4)*** 0.29 (8.6)*** 0.20 (70) ns 0.34 (89) ns

Purple 2 0.69 (14.3) ns 0.55 (16.3)** 0.30 (162) ns 0.16 (188) ns

Blue 9 0.36 (7.5)*** 0.36 (10.7)*** 0.26 (82) ns 0.25 (112) ns

12 Standard 1.00 (24.7, 1.4160.076) 1.00 (21.3, 1.3560.065) 0.38 (253) 0.43 (204)

Blue 11 0.23 (5.7)*** 0.35 (7.5)*** 0.19 (68) ** 0.18 (71) ***

Blue 10 0.25 (6.2)*** 0.37 (7.9)*** 0.21 (78) * 0.28 (83) *

Blue 6 0.44 (10.9)** 0.32 (6.8)*** 0.19 (119) ** 0.28 (75) *

Purple 2 0.80 (19.8) ns 0.77 ns (16.4) 0.36 (204) ns 0.35 (159) ns

13 Standard 1.00 (19.4, 1.3160.056) 1.00 (25.3, 1.4260.063) 0.37 (206) 0.34 (258)

Purple 1 0.51 (9.9)*** 0.45 (11.4)*** 0.29 (108) ns 0.30 (119) ns

Purple 2 0.63 (12.2)* 0.67 (17.0) ns 0.31 (140) ns 0.28 (191) ns

Blue 7 1a 0.48 (9.3)*** 0.42 (10.6)*** 0.31 (98) ns 0.29 (107) ns

Blue 7 3a 0.34 (6.6)*** 0.35 (8.9)*** 0.31 (71) ns 0.21 (90) ns

14 Standard 1.00 (14.3, 1.1860.070) 1.00 (22.4, 1.3760.068) 0.28 (168) 0.19 (263)

Purple 4 0.73 (10.4) ns 0.62 (13.9) ns 0.26 (124) ns 0.15 (161) ns

Purple 5 0.81 (11.6) ns 0.52 (11.6)** 0.20 (131) ns 0.18 (131) ns

Purple 8 0.74 (10.6) ns 0.59 (13.2)* 0.22 (117) ns 0.15 (142) ns

Purple 2 0.73 (10.4) ns 0.58 (13.0)* 0.24 (127) ns 0.18 (139) ns

15 Standard 1.00 (22.1, 1.3660.066) 1.00 (28.9, 1.4860.075) 0.27 (233) 0.25 (318)

Purple 3 0.54 (11.9)** 0.50 (14.5)** 0.24 (136) ns 0.20 (175) ns

Purple 6 0.44 (9.7)*** 0.46 (13.3)** 0.14 (106) ns 0.13 (159) ns

Purple 7 0.50 (11.1)** 0.52 (15.0)** 0.21 (146) ns 0.13 (196) ns

Purple 1 0.56 (12.4)** 0.48 (13.9)** 0.15 (157) ns 0.17 (165) ns

a1 refers to 1 layer of cloth, 3 refers to 3 layers of cloth.
Catch index is the detransformed mean daily catch of a target expressed as a proportion of that from the standard target (Phthalogen blue cotton). The detransformed
mean catches are shown in brackets. For the Standards only, the transformed mean catch6SED are also reported. The landing score (sample size in brackets) of each
cloth is the number landing on the target expressed as a proportion of the total number caught by the bait. Asterisks indicate that the catch index or landing score
differs from the standard at 0.05 (*), 0.01 (**) or 0.001(***) levels of probability.
doi:10.1371/journal.pntd.0001661.t002
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having the highest order of interaction and least significance. Only

terms that reduced deviance significantly from the maximal model

were included in the final, minimally-adequate model.

Results

Comparison of different colours
The first set of seven experiments (Table 1) compared the

responses of G. f. fuscipes to baits of different colour. The colours

can be divided into two groups: i) ‘‘cut-off’’ colours, i.e., colours

with a steeply sloped spectrum (yellow, orange, red and brown,

Fig. 1 and Supplementary Fig. S1), and ii) ‘‘band reflecting’’

colours (i.e. blue, green Fig. 2 and Supplementary Fig. S1 and S2,

[24]). The total catches suggest that no colour was significantly

better than the Phthalogen blue C standard (Table 1) – the index

with other colours being on average only 0.58 (range: 0.30–0.85)

for males and 0.48 (range: 0.30–0.85) for females, albeit that the

index was not always significantly different from the Phthalogen

blue C standard of 1.00. ‘‘Cut off’’ colours, with spectra of slope

.500 nm, had efficacies that more closely approached the

Phthalogen blue C standard, being on average 0.63 (range:

0.44–0.84) for males and 0.56 (range: 0.35–0.84) for females (Exp.

1, 2, 4 and 5, Fig. 1B). Yellow and green targets performed poorly,

with an average index of 0.51 (range: 0.39–0.67) for males and

0.40 (range: 0.32–0.55) for females (Exp. 2–4), while purple

(Purple 1) was highly effective for male (average 0.84, range: 0.82–

0.85) flies but not females (average 0.45, range: 0.43–0.47, Exp. 3

and 5).

The series of achromatic targets (see Fig. 2 inset) compared in

two experiments indicated that effectiveness tended to decline in

the order black, dark grey, light grey and white (Exp. 6 and 7),

albeit that the index for White 2 differed almost two-fold between

experiments. Since the catch with the Phthalogen blue C standard

was higher than with any of the achromatic colours it seems that

the effectiveness of the blue is dependent on colour discrimination

rather than intensity contrast alone.

In general the proportion caught on the cloth (the landing score)

was low for all colours (Table 1), averaging 0.24 (range: 0.08–0.40)

for males and 0.23 (range: 0.07–0.44) for females. The lowest

proportions being observed for three shades of green cotton

(Green 1–3) and a purple cotton (Purple 1) material in Exp. 3 and

a white polyester (White 2) in Exp. 7 (Table 1). These were the

only experiments where a significant difference in landing score

compared to the standard was observed. However, the landing

score for three of the same materials was not significantly different

to the standard in three other experiments (comp. Exp. 4 for

Green 2, Exp. 5 for Purple 1 and Exp. 6 for White 2.

Comparison of blue and purple fabrics
The second set of experiments (Table 2) focused on the blue,

purple and black colours that performed well in the first set

(Table 1), but explored a wider range of materials. Again the

Phthalogen blue C standard performed better than any other

cloth. A higher peak at the reflectance accounting for most of the

reflectance of Phthalogen blue C standard (supplementary Fig. S2)

did not increase the catch (Exp. 9). The same was observed in

experiment 10 which compared blue materials with reflectance

peaks at a slightly lower wavelength than the Phthalogen blue C

standard (among them Blue 8). This contrasts with a previous

study [24] which found a positive linear relationship between log

transformed blue reflectance of the materials used for traps and the

log transformed catches of the traps. This difference may be

explained by the higher reflectance in the UV range for all the

materials compared to the standard and Blue 8 respectively

(Supplementary Fig. 2). The Phthalogen blue C standard was

about twice as effective as the corresponding polyester cloth (Exp.

8, 9 and 13). This poor performance of polyester did not seem to

be due to the relatively high translucence of the fabric since

reducing the translucence of the polyester, by using three layers

together, did not increase the catch, in fact it lowered it. This

decrease in fly numbers was significant for males (Exp. 13).

Of all the fabrics tested the most promising alternative to the

Phthalogen blue C standard was purple polyester (Purple 2, Exp.

11, 12 and 14). Furthermore, the purple polyester bait performed

well in relation to the blue polyester material (Blue 7). Two

experiments compared different shades of purple polyester cloth

(Exp. 14 and 15). For males, Purples 4, 5 and 8 had high catch

indices (Table 2), while Purples 3, 6 and 7 performed less well. The

latter three purples were comparatively dark, with reflectance

peaking at relatively lower wavelengths (Supplementary Fig. S2).

For females the indices seemed little affected by the type of purple.

As with the first set of experiments (Table 1), the second set

(Table 2) showed that a relatively low proportion of tsetse landed

on the cloth panel. Overall the landing score was highest with the

standard (range: 0.28–0.45 for males, 0.19–0.43 for females). The

significantly lower landing score observed for some materials (Exp.

8, 9 and 12) was mainly for blue polyester cloth which had a

reflectance peak at the same wavelength as the standard but with a

higher peak (Blue 7, 9, 10, 11, 12 and 13, Supplementary Fig. S2).

However, as in the first set of experiments the significantly lower

landing response was not consistent between experiment (comp.

Blue 7 in Exp. 8 and 9 to Exp. 13).

Modelling target catch as a function of spectral
reflectivities
Details of the regression models are shown in Table 3.

Modelling catch as a function of reflectance in the various colour

bands showed that for both sexes, catch was negatively correlated

with reflectivity in the ‘ultraviolet’ and ‘green’ bands but positively

correlated with reflectivity in the ‘blue’ band. For females only,

there was also a positive correlation with reflectivity in the ‘red’

band. Carrying out the regression analysis with reflectance at four

wavelengths where tsetse show peak sensitivities showed that

reflectivity at 360 nm, 460 nm and 520 nm were highly significant

and exhibited the same trend as the analyses with colour bands:

catches were negatively correlated with reflectivity at 360 nm

(<UV) and 520 nm (<green) but positively correlated with

460 nm (<blue). The ‘band’ (regressions 1 and 2) and ‘peak’

models (regressions 3 and 4) explained similar amounts of

variation (40–42% for the male catches and 61–62% for females).

For both the ‘colour band’ and ‘wavelength’ models, there were no

significant interactions between the main explanatory variables.

Discussion

The results show that the responses of G. f. fuscipes to colour are

broadly similar to those of other tsetse: blues, and phthalogen blue

sensu stricto in particular, are more attractive than other colours

whereas reds and blacks are intermediate and green-yellow is least

attractive [7,8]. In studies of G. pallidipes in Zimbabwe, [24] catch

was modelled from different coloured traps as a function of mean

reflectivity in four colour bands: 300–410 nm (ultraviolet), 410–

520 nm (blue-green), 520–615 nm (green-yellow-orange) and

615–700 nm (red). A similar approach was followed with studies

of G. palpalis palpalis in Côte d’Ivoire using three colour bands:

300–380 nm (ultraviolet), 380–480 nm (ultraviolet-blue) and 480–

620 nm (blue-green-yellow- red) [7]. Furthermore, physiological

studies of the eyes of tsetse [26,28] and other higher Diptera such
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as Musca [25] suggest that they have four peaks of sensitivity at

330 nm, 360 nm, 460 nm and 520 nm. Consequently these four

bands and four reflectivity peaks were used in multiple regression

analysis in this study. The results of these analyses, which show a

negative correlation with ‘ultraviolet’ (band and peak), green

(peak) and ‘green’ (band) reflectivity and a positive correlation with

‘blue’ (band and peak) reflectivity, are in accordance with those for

G. pallidipes [24] and G. palpalis palpalis [7].

Even though our data show that there are many similarities

between the response of G. f. fusipes and other tsetse species to

visual cues, the data also confirms the observed differences

between Palpalis and Morsitans group tsetse flies. In the present

study there is a 2–36 difference in catch between the best

(phthalogen blue cotton) and worst (yellow and targets with high

UV reflectance) targets. This range is similar to that reported for

other Palpalis-group tsetse [7,8] but much less than the ten-fold

range reported for Morsitans-group tsetse [29]. It seems likely

therefore that the Palpalis-group tsetse are less responsive than the

Morsitans-group to colour. Furthermore, Morsitans-group tsetse

are equally attracted to black and blue targets, and black elicits a

stronger landing response [29], which contrasts with the landing

scores reported here. Previous studies show that for Palpalis group

tsetse, (G. p. palpalis and G. tachinoides) phthalogen blue is more

attractive than black, and black does not seem to elicit a marked

landing responses [7,8]. Our data confirm these results for G. f.

fuscipes (Exp. 5–7, Table 1 and Exp. 8, Table 2).

The landing score was in general low in this study and it did not

increase with the greater UV reflectance of white (Exp. 7 Table 2),

as was observed for G. p. palpalis, G. tachinoides and G. pallidipes in
previous studies [7,8,30,31].

The widespread attraction of tsetse, along with many other

species of biting Diptera, to blue and black objects is intriguing. It

has been suggested that the contrast of blue against the green-

yellow reflectance of vegetation is essentially a stimulus of ‘not

vegetation’ [32]. More recently, it has been suggested that this

phenomenon is related to the resting behaviour of tsetse; tsetse

commonly rest in shady places which are tinted bluish by the

scattered blue skylight [33]. However, tsetse attracted to targets

Figure 1. Spectral reflectivity and mean catches of tsetse from ‘cut-off’ coloured targets. (A) Spectral reflectivity of White 3 (W), Yellow 1
and 2 (Y1, Y2), Orange (O), Red 1 and 2 (R1, R2) and Brown (Bn). (B) Mean catches of male and female tsetse based on catch indices presented in
Table 1.
doi:10.1371/journal.pntd.0001661.g001

Figure 2. Spectral reflectivities of ‘band-pass’ and achromatic targets. Main figure shows spectra for the standard (Phthalogen blue) and
green (Green 2) targets. Inset shows Black 1, White 2 and Grey 1 and 2 (G1, G2) targets.
doi:10.1371/journal.pntd.0001661.g002
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are generally in a host- and/or mate-seeking mode of behaviour

rather than seeking a resting site [8,34] and thus it seems unlikely

that tsetse are ‘mistaking’ targets for shady places. Nonetheless,

hosts themselves are characterised by shaded areas, particularly

those on the underside of their bodies – hence the suggestion that

countershading has evolved to conceal prey from predators [35].

The response to blue may therefore be related, at least in part, to

the shadows created on the bodies of potential hosts.

The data presented support the view that phthalogen blue

cotton is at least as effective as any other material tested, and

probably more effective than most or all of them. This is

unfortunate given the declining availability of phthalogen blue

dye, the technical problems with cotton, and the difficulties of

dyeing artificial fibres with phthalogen blue. There seem to be two

main options. First, it might be useful to look for other alternatives

to phthalogen blue dyes – ones that can be used with polyester.

Scientists have searched for such options previously [10,11].

Present experiments indicate the wavelengths on which such a

search should concentrate for G. fuscipes. The purple-blue range

(370–470 nm) and red range (.500 nm, for ‘‘cut off’’ colours) was

much more effective for males and females than the yellow-green

range (525–600 nm, for ‘‘band reflecting’’ colours). Furthermore,

light blue fabrics (Blue 4, Blue 5 and Blue 11) were in general of

poor effectiveness. Our results underline the important negative

effects of UV reflectivity on the attraction of tsetse to targets.

Hence the selection of fabrics must be guided by spectral analysis

and not just visual inspection of the cloth to identify fabrics that

reflect strongly in the blue- but weakly in the UV-region of the

spectrum. Second, if the only highly effective and colour-fast dye

that is available can be used only on cotton, it might be acceptable

to employ targets where the cloth panel is not treated with

insecticide. Previous work has shown that treating a net with 0.8%

deltamethrin results in .70% mortality for at least 9 months [36].

Present data for the distribution of catches between the netting and

cloth panels (the landing score) suggest that the loss of effectiveness

due to not treating the cloth will not be greater than about a third,

and the loss might be much less if, as expected [37], many or most

of the flies that alight first on the cloth panel subsequently fly

Table 3. Regression analyses of relationship between catch and spectral reflectivities of targets.

Sex Model Deviance D deviance (%) d.f. F to remove Estimate SE

1 Males Null 1.955 74

Maximal 1.140 70

-UV 0.294 25.8 1 18.1*** 20.323 0.0738

-Blue 0.230 20.2 1 14.1*** 0.185 0.0495

-Green 0.086 7.5 1 5.3* 20.108 0.0589

-Red 0.034 3.0 1 2.1 ns

(Intercept) 20.015 0.0589

2 Females Null 2.060

Maximal 0.776

-UV 0.485 62.5 1 43.8*** 20.536 0.0810

-Blue 0.384 49.5 1 34.6*** 0.322 0.0547

-Green 0.119 15.3 1 10.8** 20.180 0.0548

-Red 0.052 6.7 1 4.6* 0.088 0.0407

(Intercept) 20.038 0.0465

3 Males Null 1.955 74

Maximal 1.061 70

2l330 0.060 5.7 1 3.9 ns

2l360 0.177 16.7 1 11.7** 20.261 0.0463

2l460 0.232 21.9 1 15.3*** 0.202 0.0612

2l520 0.152 14.3 1 10.0** 20.171 0.0682

(Intercept) 20.026 0.0540

4 Females Null 2.060 74

Maximal 0.728 70

2l330 0.037 5.1 1 3.5 ns

2l360 0.178 24.5 1 17.1*** 20.261 0.0463

2l460 0.297 40.8 1 28.5*** 0.202 0.0612

2l520 0.162 22.3 1 15.6** 20.171 0.0681

(Intercept) 20.026 0.0540

For each regression model, explanatory terms (mean reflectivities across colour bands for regressions 1 and 2 or at particular wavelengths for regressions 3 and 4) were
removed from the maximal models in which all terms were included but not their interactions. Parameter estimates and SEs are for the minimally-adequate models
which include significant terms only. The change in deviance (D deviance) due to removing a term from the maximal model is also expressed as a percentage of the
deviance of the maximal model.
doi:10.1371/journal.pntd.0001661.t003
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round it and so collide with the net before departing from the

target site.

In any event, allowing that it might be useful to screen cloth

materials for use with those types of target in which only the

netting is impregnated with insecticide, it would be useful if future

screening tests employed not only the present fully-electrified

targets but also targets in which the grid is restricted only to the

net.

Supporting Information

Appendix S1 Dying procedure of polyester materials

Blue 9–13, Purple 2, White 2. Detailed dying procedure for

materials Blue 9–13, Purple 2, White 2.

(DOCX)

Figure S1 Reflectance spectra data. Data for reflectance

spectra of the 37 different materials used measured at Danish

technological service institute (http://www.dhigroup.com) on a

Shimadzu dual beam photometer, from 190–900 nm at 10 nm

intervals.

(XLSX)

Figure S2 Reflectance spectra graphs for each experi-

ment. Graphs of spectral reflectivities of materials used in each

experiment, on the y-axis is percent reflectivity and on the x-axis

wavelength in nm.

(XLSX)

Acknowledgments

The authors thank Dr. Maurice Omolo for support of field work activities,

Vestergaard Frandsen for some of the cloth materials, Jack Eaton and

Sabine Kase for help with textile references and Drs. Chris Green and

Johan Esterhuizen for discussions and encouragement. The authors also

wish to thank Mrs. Jedida Odongo, Messrs. Pollycarp Akello, Jacob

Wakoli, William Owinga, Jeremiah Odallo, and Basilio Njiru for field

assistance.

Author Contributions

Conceived and designed the experiments: JML MJL SJT. Performed the

experiments: JML. Analyzed the data: JML SEJA GAV MJL SJT.

Contributed reagents/materials/analysis tools: PG RSB. Wrote the paper:

JML PG RSB SEJA GAV MJL SJT.

References

1. Brun R, Blum J, Chappuis F, Burri C (2010) Human African trypanosomiasis.
Lancet 375: 148–159.

2. Rogers DJ, Robinson TP (2004) Tsetse distribution. In: Maudlin I, Holmes PH,
Miles MA, eds. The trypanosomiases: CABI. pp 139–179.

3. Simarro PP, Jannin J, Cattand P (2008) Eliminating human African
trypanosomiasis: where do we stand and what comes next. PLoS Med 5: e55.

4. Simarro PP, Cecchi G, Paone M, Franco JR, Diarra A, et al. (2010) The Atlas of
human African trypanosomiasis: a contribution to global mapping of neglected
tropical diseases. Int J Health Geogr 9: 57.

5. Simarro PP (2006) Human African trypanosomiasis: an epidemiological update.
WHO Weekly Epidemiological Record 81: 69–80.

6. Vale GA, Torr S (2004) Development of bait technology to control tsetse. In:
Maudlin I, Holmes PH, Miles MA, eds. The trypanosomiases: CABI. pp
509–524.

7. Green CH (1988) The effect of color on trap oriented and screen oriented
responses in Glossina palpalis palpalis (Robineau-Desvoidy) (Diptera, Glossinidae).
Bulletin Of Entomological Research 78: 591–604.

8. Green CH (1990) The effect of colour on the numbers , age and nutritional
status of Glossina tachinoides (Diptera, Glossinidae) attracted to targets.
Physiological Entomology 15: 317–329.

9. Green CH (1994) Bait Methods for Tsetse-Fly Control. Advances in Parasitology
Vol 34: . pp 229–291.

10. Mihok S (2002) The development of a multipurpose trap (the Nzi) for tsetse and
other biting flies. Bulletin Of Entomological Research 92: 385–403.

11. Mihok S, Carlson DA (2007) Performance of painted plywood and cloth Nzi
traps relative to Manitoba and Greenhead traps for tabanids and stable flies.
Journal of Economic Entomology 100: 613–618.

12. Torr S, Chamisa A, Vale G, Lehane MJ, Lindh J (2011) Responses of the tsetse
flies, Glossina morsitans morsitans and G. pallidipes, to baits of various size. Medical
and Veterinary Entomology doi: 10.1111/j.1365-2915.2011.00947.x.

13. Lindh JM, Torr SJ, Vale GA, Lehane MJ (2009) Improving the cost-
effectiveness of artificial visual baits for controlling the tsetse fly Glossina fuscipes
fuscipes. Plos Neglected Tropical Diseases 3: e474. 410.1371/jour-
nal.pntd.0000474.

14. Esterhuizen J, Rayaisse JB, Tirados I, Mpiana S, Solano P, et al. (2011)
Improving the cost-effectiveness of visual devices for the control of riverine tsetse
flies, the major vectors of human african trypanosomiasis. Plos Neglected
Tropical Diseases 5: e1257.

15. Needles HL (1981) Handbook of textile fibers, dyes, and finishes. New York:
Garland STPM Press.

16. Galloway LD (1930) 19 - The fungi causing mildew in cotton goods. Journal of
the Textile Institute 21: T277–T286.

17. Fargher RG (1944) The incidence and control of mould and bacterial attack on
textiles. Journal of the Society of Dyers and Colourists. pp 188–122.

18. Blackburn RS, Burkinshaw SM (2002) A greener approach to cotton dyeings
with excellent wash fastness. Green Chemistry 4(1): 47–52.

19. Hossain HI (1989) Assay of permethrin impregnated fabrics and bioassay with
mosquitoes. Bulletin of Entomological Research 79: 299–380.

20. Vale GA (1974) New field methods for studying the response of tsetse flies
(Diptera, Glossinidae) to hosts. Bulletin of Entomological Research 64: 199–208.

21. Mohamed-Ahmed MM, Wynholds Y (1997) Effects of vegetation and weather
on trap catches of Glossina fuscipes fuscipes near Lake Victoria, Kenya.
Entomologia Experimentalis et Applicata 85: 231–236.

22. Mwangelwa MI, Dransfield RD, Otieno LH, Mbata KJ (1990) Distribution and
diel activity patterns of Glossina fuscipes fuscipes Newstead on Rusinga island and
mainland in Mbita, Kenya. Insect Science and Its Application 11: 315–321.

23. Team RDC (2011) R: A language and environment for statistical computing.
Vienna, Austria: R Foundation for Statistical Computing.

24. Green CH, Flint S (1986) An analysis of colour effects in the performance of the
F2 trap against Glossina pallidipes Austen and G. morsitans morsitans Westwood
(Diptera, Glossinidae). Bulletin Of Entomological Research 76: 409–418.

25. Hardie RC, Kirschfeld K (1983) Ultraviolet sensitivity of fly photoreceptors R7
and R8: Evidence for a sensitising function. European Biophysics Journal 9:
171–180.

26. Hardie R, Vogt K, Rudolph A (1989) The compound eye of the tsetse fly
(Glossina morsitans morsitans and Glossina palpalis palpalis). Journal of Insect
Physiology 35: 423–431.

27. Troje N (1993) Spectral categories in the learning behaviour of blowflies.
Zeitschrift Fur Naturforschung C-a Journal of Biosciences 48: 96–104.

28. Green CH, Cosens D (1983) Spectral responses of the tsetse fly, Glossina morsitans
morsitans. Journal of Insect Physiology 29: 795–800.

29. Green CH (1986) Effects of Colors and Synthetic Odors on the Attraction of
Glossina pallidipes and Glossina morsitans morsitans to Traps and Screens.
Physiological Entomology 11: 411–421.

30. Green CH (1989) The use of 2 coloured screens for catching Glossina palpalis
palpalis (Robineau-Desvoidy) (Diptera, Glossinidae). Bulletin Of Entomological
Research 79: 81–93.

31. Green CH (1993) The effects of odours and target colour on landing responses of
Glossina morsitans morsitans and G. pallidipes (Diptera, Glossinidae). Bulletin Of
Entomological Research 83: 553–562.

32. Gibson G, Torr SJ (1999) Visual and olfactory responses of haematophagous
Diptera to host stimuli. Medical and Veterinary Entomology 13: 2–23.

33. Steverding D, Troscianko T (2004) On the role of blue shadows in the visual
behaviour of tsetse flies. Proceedings of the Royal Society of London Series B-
Biological Sciences 271: S16–S17.

34. Torr SJ, Hargrove JW (1999) Behaviour of tsetse (Diptera : Glossinidae) during
the hot season in Zimbabwe: the interaction of micro-climate and reproductive
status. Bulletin of Entomological Research 89: 365–379.

35. Rowland HM (2009) From Abbott Thayer to the present day: what have we
learned about the function of countershading? Philosophical Transactions of the
Royal Society B-Biological Sciences 364: 519–527.

36. Torr SJ, Holloway MTP, Vale GA (1992) Improved Persistence of Insecticide
Deposits on Targets for Controlling Glossina-Pallidipes (Diptera, Glossinidae).
Bulletin of Entomological Research 82: 525–533.

37. Vale GA (1993) Visual responses of tsetse flies (Diptera, Glossinidae) to odour
baited targets. Bulletin Of Entomological Research 83: 277–289.

Colour Affecting Target Catch of Glossina fuscipes

www.plosntds.org 9 May 2012 | Volume 6 | Issue 5 | e1661


