37 research outputs found

    Person identity-specific adaptation effects in the ventral occipito-temporal cortex

    Get PDF
    Identifying the faces of familiar persons requires the ability to assign several different images of a face to a common identity. Previous research showed that the occipito-temporal cortex, including the fusiform and the occipital face areas, is sensitive to personal identity. Still, the viewpoint, facial expression, and image-independence of this information are currently under heavy debate. Here we adapted a rapid serial visual stimulation paradigm (Johnston et al., 2016) and presented highly variable ambient-face images of famous persons to measure fMRI adaptation. FMRI adaptation is considered as the neuroimaging manifestation of repetition suppression, a neural phenomenon currently explained as a correlate of reduced predictive error responses for expected stimuli. We revisited the question of image-invariant identity-specific encoding mechanisms of the occipito-temporal cortex, using fMRI adaptation with a particular interest in predictive mechanisms. Participants were presented with trials containing eight different images of a famous person, images of eight different famous persons, or seven different images of a particular famous person followed by an identity change to violate potential expectation effects about person identity. We found an image-independent adaptation effect of identity for famous faces in the fusiform face area. However, in contrast to previous electrophysiological studies, using similar paradigms, no release of the adaptation effect was observed when identity-specific expectations were violated. Our results support recent multivariate pattern analysis studies, showing image-independent identity encoding in the core face-processing areas of the occipito-temporal cortex. These results are discussed in the frame of recent identity-processing models and predictive mechanisms

    The HEV Ventilator

    Get PDF
    HEV is a low-cost, versatile, high-quality ventilator, which has been designed in response to the COVID-19 pandemic. The ventilator is intended to be used both in and out of hospital intensive care units, and for both invasive and non-invasive ventilation. The hardware can be complemented with an external turbine for use in regions where compressed air supplies are not reliably available. The standard modes provided include PC-A/C(Pressure Assist Control),PC-A/C-PRVC(Pressure Regulated Volume Control), PC-PSV (Pressure Support Ventilation) and CPAP (Continuous Positive airway pressure). HEV is designed to support remote training and post market surveillance via a web interface and data logging to complement the standard touch screen operation, making it suitable for a wide range of geographical deployment. The HEV design places emphasis on the quality of the pressure curves and the reactivity of the trigger, delivering a global performance which will be applicable to ventilator needs beyond theCOVID-19 pandemic. This article describes the conceptual design and presents the prototype units together with their performance evaluation.Comment: 34 pages, 18 figures, Extended version of the article submitted to PNA

    Variation in Structure and Process of Care in Traumatic Brain Injury: Provider Profiles of European Neurotrauma Centers Participating in the CENTER-TBI Study.

    Get PDF
    INTRODUCTION: The strength of evidence underpinning care and treatment recommendations in traumatic brain injury (TBI) is low. Comparative effectiveness research (CER) has been proposed as a framework to provide evidence for optimal care for TBI patients. The first step in CER is to map the existing variation. The aim of current study is to quantify variation in general structural and process characteristics among centers participating in the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. METHODS: We designed a set of 11 provider profiling questionnaires with 321 questions about various aspects of TBI care, chosen based on literature and expert opinion. After pilot testing, questionnaires were disseminated to 71 centers from 20 countries participating in the CENTER-TBI study. Reliability of questionnaires was estimated by calculating a concordance rate among 5% duplicate questions. RESULTS: All 71 centers completed the questionnaires. Median concordance rate among duplicate questions was 0.85. The majority of centers were academic hospitals (n = 65, 92%), designated as a level I trauma center (n = 48, 68%) and situated in an urban location (n = 70, 99%). The availability of facilities for neuro-trauma care varied across centers; e.g. 40 (57%) had a dedicated neuro-intensive care unit (ICU), 36 (51%) had an in-hospital rehabilitation unit and the organization of the ICU was closed in 64% (n = 45) of the centers. In addition, we found wide variation in processes of care, such as the ICU admission policy and intracranial pressure monitoring policy among centers. CONCLUSION: Even among high-volume, specialized neurotrauma centers there is substantial variation in structures and processes of TBI care. This variation provides an opportunity to study effectiveness of specific aspects of TBI care and to identify best practices with CER approaches

    Variation in monitoring and treatment policies for intracranial hypertension in traumatic brain injury: A survey in 66 neurotrauma centers participating in the CENTER-TBI

    Get PDF
    Background: No definitive evidence exists on how intracranial hypertension should be treated in patients with traumatic brain injury (TBI). It is therefore likely that centers and practitioners individually balance potential benefits and risks of different intracranial pressure (ICP) management strategies, resulting in practice variation. The aim of this study was to examine variation in monitoring and treatment policies for intracranial hypertension in patients with TBI. Methods: A 29-item survey on ICP monitoring and treatment was developed based on literature and expert opinion, and pilot-tested in 16 centers. The questionnaire was sent to 68 neurotrauma centers participating in the Collaborative European Neurotrauma Effectiveness Research (CENTER-TBI) study. Results: The survey was completed by 66 centers (97% response rate). Centers were mainly academic hospitals (n = 60, 91%) and designated level I trauma centers (n = 44, 67%). The Brain Trauma Foundation guidelines were used in 49 (74%) centers. Approximately ninety percent of the participants (n = 58) indicated placing an ICP monitor in patients with severe TBI and computed tomography abnormalities. There was no consensus on other indications or on peri-insertion precautions. We found wide variation in the use of first- and second-tier treatments for elevated ICP. Approximately half of the centers were classified as having a relatively aggressive approach to ICP monitoring and treatment (n = 32, 48%), whereas the others were considered more conservative (n = 34, 52%). Conclusions: Substantial variation was found regarding monitoring and treatment policies in patients with traumatic brain injury and intracranial hypertension. The results of this survey indicate a lack of consensus between European neurotrauma centers and provide an opportunity and necessity for comparative effectiveness research

    Variation in monitoring and treatment policies for intracranial hypertension in traumatic brain injury: A survey in 66 neurotrauma centers participating in the CENTER-TBI study

    Get PDF
    The distributions of species are not only determined by where they can survive – they must also be able to reproduce. Although immigrant inviability is a well-established concept, the fact that immigrants also need to be able to effectively reproduce in foreign environments has not been fully appreciated in the study of adaptive divergence and speciation. Fertilization and reproduction are sensitive life-history stages that could be detrimentally affected for immigrants in non-native habitats. We propose that “immigrant reproductive dysfunction” is a hitherto overlooked aspect of reproductive isolation caused by natural selection on immigrants. This idea is supported by results from experiments on an externally fertilizing fish (sand goby, Pomatoschistus minutus). Growth and condition of adults were not affected by non-native salinity whereas males spawning as immigrants had lower sperm motility and hatching success than residents. We interpret these results as evidence for local adaptation or acclimation of sperm, and possibly also components of paternal care. The resulting loss in fitness, which we call “immigrant reproductive dysfunction,” has the potential to reduce gene flow between populations with locally adapted reproduction, and it may play a role in species distributions and speciation.</p

    Variation in structure and process of care in traumatic brain injury: Provider profiles of European Neurotrauma Centers participating in the CENTER-TBI study

    Get PDF
    Introduction: The strength of evidence underpinning care and treatment recommendations in traumatic brain injury (TBI) is low. Comparative effectiveness research (CER) has been proposed as a framework to provide evidence for optimal care for TBI patients. The first step in CER is to map the existing variation. The aim of current study is to quantify variation in general structural and process characteristics among centers participating in the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. Methods: We designed a set of 11 provider profiling questionnaires with 321 questions about various aspects of TBI care, chosen based on literature and expert opinion. After pilot testing, questionnaires were disseminated to 71 centers from 20 countries participating in the CENTER-TBI study. Reliability of questionnaires was estimated by calculating a concordance rate among 5% duplicate questions.Results: All 71 centers completed the questionnaires. Median concordance rate among duplicate questions was 0.85. The majority of centers were academic hospitals (n = 65, 92%), designated as a level I trauma center (n = 48, 68%) and situated in an urban location (n = 70, 99%). The availability of facilities for neuro-trauma care varied across centers; e.g. 40 (57%) had a dedicated neuro-intensive care unit (ICU), 36 (51%) had an in-hospital rehabilitation unit and the organization of the ICU was closed in 64% (n = 45) of the centers. In addition, we found wide variation in processes of care, such as the ICU admission policy and intracranial pressure monitoring policy among centers. Conclusion: Even among high-volume, specialized neurotrauma centers there is substantial variation in structures and processes of TBI care. This variation provides an opportunity to study effectiveness of specific aspects of TBI care and to identify best practices with CER approaches.</p

    A unified approach to computing real and complex zeros of zero-dimensional ideals

    No full text
    In this paper we propose a unified methodology for computing the set VK(I)V_K(I) of complex (K=CK = C) or real (K=RK = R) roots of an ideal II in R[x]R[x], assuming VK(I)V_K(I) is finite. We show how moment matrices, defined in terms of a given set of generators of the ideal I, can be used to (numerically) find not only the real variety VR(I)V_R(I), as shown in the authors’ previous work, but also the complex variety VC(I)V_C(I), thus leading to a unified treatment of the algebraic and real algebraic problem. In contrast to the real algebraic version of the algorithm, the complex analogue only uses basic numerical linear algebra because it does not require positive semidefiniteness of the moment matrix and so avoids semidefinite programming techniques. The links between these algorithms and other numerical algebraic methods are outlined and their stopping criteria are related

    The occipital face area is causally involved in identity‑related visual‑semantic associations

    Get PDF
    Faces are processed in a network of areas within regions of the ventral visual stream. However, familiar faces typically are characterized by additional associated information, such as episodic memories or semantic biographical information as well. The acquisition of such non-sensory, identity-specific knowledge plays a crucial role in our ability to recognize and identify someone we know. The occipital face area (OFA), an early part of the core face-processing network, is recently found to be involved in the formation of identity-specific memory traces but it is currently unclear if this role is limited to unimodal visual information. The current experiments used transcranial magnetic stimulation (TMS) to test whether the OFA is involved in the association of a face with identity-specific semantic information, such as the name or job title of a person. We applied an identity-learning task where unfamiliar faces were presented together with a name and a job title in the first encoding phase. Simultaneously, TMS pulses were applied either to the left or right OFA or to Cz, as a control. In the subsequent retrieval phase, the previously seen faces were presented either with two names or with two job titles and the task of the participants was to select the semantic information previously learned. We found that the stimulation of the right or left OFA reduced subsequent retrieval performance for the face-associated job titles. This suggests a causal role of the OFA in the association of faces and related semantic information. Furthermore, in contrast to prior findings, we did not observe hemispherical differences of the TMS intervention, suggesting a similar role of the left and right OFAs in the formation of the visual-semantic associations. Our results suggest the necessity to reconsider the hierarchical face-perception models and support the distributed and recurrent models

    Expression of C9orf72 hexanucleotide repeat expansion leads to formation of RNA foci and dipeptide repeat proteins but does not influence autophagy or proteasomal function in neuronal cells

    No full text
    Abstract C9orf72 hexanucleotide repeat expansion (HRE) is the major genetic cause underpinning frontotemporal lobar degeneration (FLTD) and amyotrophic lateral sclerosis (ALS). C9orf72 HRE-associated pathogenesis involves both loss-of-function, through reduced C9orf72 levels, and gain-of-function mechanisms, including formation of RNA foci and generation of dipeptide repeat (DPR) proteins. In addition, dysfunctional protein degradation pathways, i.e. autophagy and ubiquitin-proteasome system (UPS), are suggested. Our aim was to study the gain-of-function mechanisms in the context of the function of protein degradation pathways as well as the regulation of the DPR proteins through these pathways. To this end, we expressed the pathological HRE in neuronal N2a cells and mouse primary cortical neurons. Protein degradation pathways were modulated to induce or block autophagy or to inhibit UPS. In addition, proteasomal activity was assessed. The C9orf72 HRE-expressing N2a cells and neurons were confirmed to produce RNA foci and DPR proteins, predominantly the Poly-GP proteins. However, the presence of these pathological hallmarks did not result in alterations in autophagy or proteasomal activity in either of the studied cell types. In N2a cells, Poly-GP proteins appeared in soluble forms and Lactacystin-mediated UPS inhibition increased their levels, indicating proteasomal regulation. Similar effects were not observed in cortical neurons, where the Poly-GP proteins formed also higher molecular weight forms. These results suggest a cell type-specific morphology and regulation of the DPR proteins. Further studies in other model systems may shed additional light onto the effects of the C9orf72 HRE on cellular protein degradation pathways and the regulation of the DPR protein levels

    C9orf72 proteins regulate autophagy and undergo autophagosomal or proteasomal degradation in a cell type-dependent manner

    No full text
    Abstract Dysfunctional autophagy or ubiquitin-proteasome system (UPS) are suggested to underlie abnormal protein aggregation in neurodegenerative diseases. Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS)-associated C9orf72 is implicated in autophagy, but whether it activates or inhibits autophagy is partially controversial. Here, we utilized knockdown or overexpression of C9orf72 in mouse N2a neuroblastoma cells or cultured neurons to elucidate the potential role of C9orf72 proteins in autophagy and UPS. Induction of autophagy in C9orf72 knockdown N2a cells led to decreased LC3BI to LC3BII conversion, p62 degradation, and formation of LC3-containing autophagosomes, suggesting compromised autophagy. Proteasomal activity was slightly decreased. No changes in autophagy nor proteasomal activity in C9orf72-overexpressing N2a cells were observed. However, in these cells, autophagy induction by serum starvation or rapamycin led to significantly decreased C9orf72 levels. The decreased levels of C9orf72 in serum-starved N2a cells were restored by the proteasomal inhibitor lactacystin, but not by the autophagy inhibitor bafilomycin A1 (BafA1) treatment. These data suggest that C9orf72 undergoes proteasomal degradation in N2a cells during autophagy. Lactacystin significantly elevated C9orf72 levels in N2a cells and neurons, further suggesting UPS-mediated regulation. In rapamycin and BafA1-treated neurons, C9orf72 levels were significantly increased. Altogether, these findings corroborate the previously suggested regulatory role for C9orf72 in autophagy and suggest cell type-dependent regulation of C9orf72 levels via UPS and/or autophagy
    corecore