4,309 research outputs found
FLEET: Butterfly Estimation from a Bipartite Graph Stream
We consider space-efficient single-pass estimation of the number of
butterflies, a fundamental bipartite graph motif, from a massive bipartite
graph stream where each edge represents a connection between entities in two
different partitions. We present a space lower bound for any streaming
algorithm that can estimate the number of butterflies accurately, as well as
FLEET, a suite of algorithms for accurately estimating the number of
butterflies in the graph stream. Estimates returned by the algorithms come with
provable guarantees on the approximation error, and experiments show good
tradeoffs between the space used and the accuracy of approximation. We also
present space-efficient algorithms for estimating the number of butterflies
within a sliding window of the most recent elements in the stream. While there
is a significant body of work on counting subgraphs such as triangles in a
unipartite graph stream, our work seems to be one of the few to tackle the case
of bipartite graph streams.Comment: This is the author's version of the work. It is posted here by
permission of ACM for your personal use. Not for redistribution. The
definitive version was published in Seyed-Vahid Sanei-Mehri, Yu Zhang, Ahmet
Erdem Sariyuce and Srikanta Tirthapura. "FLEET: Butterfly Estimation from a
Bipartite Graph Stream". The 28th ACM International Conference on Information
and Knowledge Managemen
Octet baryon electromagnetic form factors in nuclear medium
We study the octet baryon electromagnetic form factors in nuclear matter
using the covariant spectator quark model extended to the nuclear matter
regime. The parameters of the model in vacuum are fixed by the study of the
octet baryon electromagnetic form factors. In nuclear matter the changes in
hadron properties are calculated by including the relevant hadron masses and
the modification of the pion-baryon coupling constants calculated in the
quark-meson coupling model. In nuclear matter the magnetic form factors of the
octet baryons are enhanced in the low region, while the electric form
factors show a more rapid variation with . The results are compared with
the modification of the bound proton electromagnetic form factors observed at
Jefferson Lab. In addition, the corresponding changes for the bound neutron are
predicted.Comment: Version accepted for publication in J.Phys. G. Few changes. 40 pages,
14 figures and 8 table
Construct Validity of the Patient‐Reported Outcomes Measurement Information System Gastrointestinal Symptom Scales in Systemic Sclerosis
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109333/1/acr22337.pd
Processing Images from the Zwicky Transient Facility
The Zwicky Transient Facility is a new robotic-observing program, in which a
newly engineered 600-MP digital camera with a pioneeringly large field of view,
47~square degrees, will be installed into the 48-inch Samuel Oschin Telescope
at the Palomar Observatory. The camera will generate ~petabyte of raw
image data over three years of operations. In parallel related work, new
hardware and software systems are being developed to process these data in real
time and build a long-term archive for the processed products. The first public
release of archived products is planned for early 2019, which will include
processed images and astronomical-source catalogs of the northern sky in the
and bands. Source catalogs based on two different methods will be
generated for the archive: aperture photometry and point-spread-function
fitting.Comment: 6 pages, 4 figures, submitted to RTSRE Proceedings (www.rtsre.org
CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity.
Hexanucleotide-repeat expansions in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD). The nucleotide-repeat expansions are translated into dipeptide-repeat (DPR) proteins, which are aggregation prone and may contribute to neurodegeneration. We used the CRISPR-Cas9 system to perform genome-wide gene-knockout screens for suppressors and enhancers of C9ORF72 DPR toxicity in human cells. We validated hits by performing secondary CRISPR-Cas9 screens in primary mouse neurons. We uncovered potent modifiers of DPR toxicity whose gene products function in nucleocytoplasmic transport, the endoplasmic reticulum (ER), proteasome, RNA-processing pathways, and chromatin modification. One modifier, TMX2, modulated the ER-stress signature elicited by C9ORF72 DPRs in neurons and improved survival of human induced motor neurons from patients with C9ORF72 ALS. Together, our results demonstrate the promise of CRISPR-Cas9 screens in defining mechanisms of neurodegenerative diseases
Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms
Coronary artery disease (CAD) is a leading cause of morbidity and mortality worldwide. Although 58 genomic regions have been associated with CAD thus far, most of the heritability is unexplained, indicating that additional susceptibility loci await identification. An efficient discovery strategy may be larger-scale evaluation of promising associations suggested by genome-wide association studies (GWAS). Hence, we genotyped 56,309 participants using a targeted gene array derived from earlier GWAS results and performed meta-analysis of results with 194,427 participants previously genotyped, totaling 88,192 CAD cases and 162,544 controls. We identified 25 new SNP-CAD associations (P < 5 × 10(-8), in fixed-effects meta-analysis) from 15 genomic regions, including SNPs in or near genes involved in cellular adhesion, leukocyte migration and atherosclerosis (PECAM1, rs1867624), coagulation and inflammation (PROCR, rs867186 (p.Ser219Gly)) and vascular smooth muscle cell differentiation (LMOD1, rs2820315). Correlation of these regions with cell-type-specific gene expression and plasma protein levels sheds light on potential disease mechanisms
Combined search for the quarks of a sequential fourth generation
Results are presented from a search for a fourth generation of quarks
produced singly or in pairs in a data set corresponding to an integrated
luminosity of 5 inverse femtobarns recorded by the CMS experiment at the LHC in
2011. A novel strategy has been developed for a combined search for quarks of
the up and down type in decay channels with at least one isolated muon or
electron. Limits on the mass of the fourth-generation quarks and the relevant
Cabibbo-Kobayashi-Maskawa matrix elements are derived in the context of a
simple extension of the standard model with a sequential fourth generation of
fermions. The existence of mass-degenerate fourth-generation quarks with masses
below 685 GeV is excluded at 95% confidence level for minimal off-diagonal
mixing between the third- and the fourth-generation quarks. With a mass
difference of 25 GeV between the quark masses, the obtained limit on the masses
of the fourth-generation quarks shifts by about +/- 20 GeV. These results
significantly reduce the allowed parameter space for a fourth generation of
fermions.Comment: Replaced with published version. Added journal reference and DO
Nucleon-nucleon elastic scattering analysis to 2.5 GeV
A partial-wave analysis of NN elastic scattering data has been completed.
This analysis covers an expanded energy range, from threshold to a laboratory
kinetic energy of 2.5 GeV, in order to include recent elastic pp scattering
data from the EDDA collaboration. The results of both single-energy and
energy-dependent analyses are described.Comment: 23 pages of text. Postscript files for the figures are available from
ftp://clsaid.phys.vt.edu/pub/said/n
CRISPR transcriptional repression devices and layered circuits in mammalian cells
A key obstacle to creating sophisticated genetic circuits has been the lack of scalable device libraries. Here we present a modular transcriptional repression architecture based on clustered regularly interspaced palindromic repeats (CRISPR) system and examine approaches for regulated expression of guide RNAs in human cells. Subsequently we demonstrate that CRISPR regulatory devices can be layered to create functional cascaded circuits, which provide a valuable toolbox for engineering purposes.National Institutes of Health (U.S.) (Grant 5R01CA155320-04)National Institutes of Health (U.S.) (Grant P50 GM098792)Korea (South). Ministry of Science, Information and Communication Technolgy. Intelligent Synthetic Biology Center of Global Frontier Project (2013M3A6A8073557
- …
