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Summary paragraph  102 

Coronary artery disease (CAD) is a leading cause of morbidity and mortality worldwide1,2. Although 103 

58 genomic regions have been associated with CAD to date3-9, most of the heritability is unexplained9, 104 

indicating additional susceptibility loci await identification. An efficient discovery strategy may be 105 

larger-scale evaluation of promising associations suggested by genome-wide association studies 106 

(GWAS). Hence, we genotyped 56,309 participants using a targeted gene array derived from earlier 107 

GWAS results and meta-analysed results with 194,427 participants previously genotyped to give a 108 

total of 88,192 CAD cases and 162,544 controls.  We identified 25 new SNP-CAD-associations (P < 109 

5x10-8, in fixed effects meta-analysis) from 15 genomic regions, including SNPs in or near genes 110 

involved in cellular adhesion, leucocyte migration and atherosclerosis (PECAM1, rs1867624), 111 

coagulation and inflammation (PROCR, rs867186 [p.Ser219Gly]) and vascular smooth muscle cell 112 

differentiation (LMOD1, rs2820315). Correlation of these regions with cell type-specific gene 113 

expression and plasma protein levels shed light on potential novel disease mechanisms. 114 

 115 

 116 

 117 

  118 
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MAIN TEXT 119 

The CardioMetabochip is a genotyping array that contains 196,725 variants of confirmed or suspected 120 

relevance to cardiometabolic traits derived from earlier GWAS.10 A previous meta-analysis by the 121 

CARDIoGRAMplusC4D consortium of 79,138 SNPs common to the CardioMetabochip and GWAS 122 

arrays, identified 15 new loci associated with CAD3. Using the CardioMetabochip, we genotyped 123 

56,309 additional samples of European (EUR; ~52%), South Asian (SAS; ~23%), East Asian (EAS; 124 

~17%) and African American (AA; ~8%) ancestries (Supplementary Information; Supplementary 125 

Tables 1, 2, 3; Supplementary Fig. 1). The results from our association analyses of these additional 126 

samples were meta-analysed with those reported by CARDIoGRAMplusC4D at 79,070 SNPs in two 127 

fixed effects meta-analyses, one in EUR participants and a second across all four ancestries (Figure 1 128 

and 2). (Over-lapping samples were removed prior to meta-analysis [Methods]). A genome-wide 129 

significance threshold (P≤5x10-8 in the fixed effects meta-analysis) was adopted to minimise false 130 

positive findings. However, even at this strict P-value threshold, there is still a small chance of a 131 

false-positive result. The EUR fixed effects meta-analysis identified 15 SNPs associated with CAD at 132 

genome-wide significance (P<5x10-8) from nine distinct genomic regions that are not established 133 

CAD-associated loci (Table 1; Supplementary Table 4; Supplementary Fig. 2). An additional six 134 

distinct novel CAD-associated regions were identified in the all ancestries fixed effects meta-analysis 135 

(Table 1; Figure 2; Supplementary Table 4). In total, 15 novel CAD-associated genomic regions (25 136 

SNPs) were identified (Supplementary Fig. 3 and 4). The lead SNPs had at least nominal evidence of 137 

association (P<0.05) in either a fixed effects meta-analysis of the EUR studies with de novo 138 

genotyping, or in a fixed effects meta-analysis of all the studies with de novo genotyping 139 

(Supplementary Table 5, Supplementary Fig. 5). Within the CARDIoGRAMplusC4D results for these 140 

SNPs, there was no evidence of heterogeneity of effects (P≥0.10) and allele frequencies were 141 

consistent with our EUR studies (Supplementary Table 5). Tests for enrichment of CAD-associations 142 

within sets of genes11 and Ingenuity Pathway Analysis confirmed known CAD pathways 143 

(Supplementary Information; Supplementary Tables 6, 7, 8). 144 

 145 
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To prioritize candidate causal genes at the new loci, we defined regions encompassing the novel 146 

CAD-associated SNPs based on recombination rates (Supplementary Table 9) and cross referenced 147 

them with expression quantitative trait loci (eQTL) databases including GTEx12,  MuTHER13 and 148 

STARNET14 (Methods). Twelve of the 15 novel CAD-associated SNPs were identified as potential 149 

eQTLs in at least one tissue (P<5x10-8; Table 2, Supplementary Table 10). Haploreg analysis15 150 

(Methods) showed CAD-associated SNPs were enriched for H3K27ac enhancer marks (P < 5.1x10-4) 151 

in multiple heart related tissues (left ventricle, right atrium, aorta) in the EUR results and in one heart 152 

related tissue (right atrium) and liver in the all ancestry analyses (Supplementary Table 11). We next 153 

tested for protein quantitative trait loci (pQTL) in plasma on the aptamer-based Somalogic platform 154 

(Methods). Twenty-four proteins from the newly identified CAD regions were assayed and passed 155 

QC. Of our 15 novel CAD-associated SNPs, two associated with plasma protein abundance in trans: 156 

rs867186 (NP_006395.2:p.Ser219Gly), a missense variant in PROCR was a trans-pQTL for protein C 157 

(P=10-10, discussed below) and rs1050362 (NP_054722.2:p.Arg140=) a synonymous variant in 158 

DHX38 was a trans-pQTL for the apolipoprotein L1 (P=5.37x10-29; Methods) which is suggested to 159 

interact with HPR in the DHX38 region (string database).  160 

  161 

To further help prioritize candidate genes, we also queried the mouse genome informatics database to 162 

discover phenotypes resulting from mutations in the orthologous genes for all genes in our 15 CAD-163 

associated regions (Table 2). To understand the pathways by which our novel loci might be related to 164 

CAD risk, we examined the associations of the 15 novel CAD regions with a wide range of risk 165 

factors, molecular traits, and clinical disorders, using PhenoScanner16 (which encompasses the 166 

NHGRI-EBI GWAS catalogue and other genotype-phenotype databases).   167 

 168 

Six of our loci have previously been associated with known CAD risk factors, such as major lipids 169 

(PCNX3,17 C12orf43/HNF1A, SCARB1, DHX38)18 and blood pressure (GOSR2,19 PROCR20). The 170 

sentinel variants for the CAD and risk factor associations at PCNX3, GOSR2 and PROCR were the 171 
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same, implicating them in known biological pathways. Two correlated SNPs (r2=0.93, D’=1.0 in 1000 172 

genomes) rs11057830 and rs11057841 tag the CAD-association in the SCARB1 region (Table 1; 173 

Supplementary Table 4), a region reported previously to be associated with HDL (rs838876, =-174 

0.049, P=7.33x10-33)18. A rare nonsynonymous variant rs74830677 (NP_005496.4:p.Pro376Leu) in 175 

SCARB1 also associated with high levels of high-density lipoprotein cholesterol (HDL-C)21. 176 

Conditional analyses showed that the CAD-association was independent of the common variant HDL 177 

association (Supplementary Information, Supplementary Fig. 6). We found the CAD SNPs and the 178 

common HDL-C SNP, rs838880 overlap enhancers active in primary liver tissue (Supplementary Fig. 179 

7). SCARB1 is highly expressed in liver and adrenal gland tissues (GTEx; Supplementary Fig. 7)12. 180 

These findings suggest that the discovered genetic variants most likely play a role in regulation of 181 

liver-restricted expression of SCARB1.  182 

The DHX38 region has previously been associated with increased total and LDL cholesterol18. Both 183 

CAD-associated SNPs in DHX38, rs1050362 (NP_054722.2:p.Arg140=) and rs2072142 (synonymous 184 

and intronic respectively; Table 1, Supplementary Table 4) are in LD but not strongly correlated with 185 

the previously reported cholesterol increasing SNP, intronic in HPR, rs2000999, (r2=0.41, D’=1 in 186 

1000 Genomes EUR). Deletions in the HP gene have recently been shown to drive the reported 187 

cholesterol association in this region22. The CAD SNPs are in strong LD with SNPs that increase 188 

haptoglobin levels23 (rs6499560, P=2.92x10-13, r2=0.97), and haptoglobin has been reported to be 189 

associated with increased CAD risk24. HP encodes an alpha-2-glycoprotein which is synthesised in the 190 

liver. It binds free haemoglobin and protects tissues from oxidative damage. Mouse models indicate 191 

the role of Hp with development of atherosclerosis25, where the underlying mechanism is disruption 192 

of the protective nature of the Hp protein against hemoglobin-induced injury of atherosclerotic 193 

plaque. While the CAD-associated SNPs are eQTLs (or in LD with eQTLs) for multiple genes in the 194 

region e.g. DHODH in aorta artery12 (rs1050362 A allele, =0.41, P=1.4x10-9),  DHX38 in peripheral 195 

blood26, atherosclerotic aortic root14 (P<8x10-26; Table 2, Supplementary Table 10), the A allele at 196 

rs1050362 is also associated with increased expression of HP in left ventricle heart (=0.535, 197 

P=8.71x10-10)12 and decreased expression of HP in whole blood (=-0.27, P=1.22x10-10)12. While 198 
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there could be multiple causal genes in the region, together these findings suggest HP is a promising 199 

candidate gene.  200 

 201 

PROCR encodes the endothelial protein C receptor (EPCR). We found the G allele at rs867186 202 

(which codes for the glycine residue at p.Ser219Gly) in PROCR confers protection from CAD 203 

(OR[95%CI]=0.93[0.91-0.96]; Table 1, Supplementary Fig. 8). The same variant is also associated 204 

with increased circulating levels of soluble EPCR (which does not enhance protein C activation)27, 205 

increased levels of protein C28, increased factor VII levels29, and increased risk of venous 206 

thrombosis27. Consistent with these associations, the variant has also been demonstrated to render the 207 

EPCR more susceptible to proteolytic cleavage, resulting in increased shedding of membrane-bound 208 

EPCR from the endothelial surface30 causing elevated protein C levels in the circulation31. We found 209 

evidence of a second, independent CAD-association at rs6088590 (r2=0, D’=0.01 with rs867186 in 210 

1000G EUR samples; Supplementary Fig. 8), an intronic SNP in NCOA6 with the T allele conferring 211 

increased risk of CAD (conditional on rs867186, conditional P=1.14x10-5, OR[95% CI]=0.97[0.95-212 

0.98]). No additional SNPs were associated with CAD after conditioning on rs867186 and rs6088590 213 

(P>0.01).  214 

 215 

Five of the novel CAD regions identified in the current analysis include genes that encode proteins 216 

expressed in smooth muscle cells (LMOD1, SERPINH1, DDX59/CAMSAP2, TNS1, PECAM1)32,33. 217 

The CAD risk allele (T) of rs2820315, which is intronic in LMOD1, is associated with increased 218 

expression of LMOD1 in omental and subcutaneous adipose tissues13,34 (MuTHER, =0.11, 219 

P=1.43x10-11). The protein is found in smooth muscle cells (SMC)32,33. In vitro and transgenic mouse 220 

studies demonstrate an essential requirement for CArG elements in the expression of LMOD1 through 221 

both serum response factor (SRF) and myocardin (MYOCD)35. Myocardin has emerged as an 222 

important molecular switch for the programs of SMC and cardiac myocyte differentiation36,37. The 223 
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CAD-associated SNP (or tag) is an eQTL for IPO9 in peripheral blood mononuclear cells38, however, 224 

given the prior biological evidence LMOD1 would make the most plausible candidate gene.  225 

 226 

rs1867624 is upstream of PECAM1, which encodes platelet/endothelial cell adhesion molecule 1, a 227 

protein found on platelet, monocyte and neutrophil surfaces. The C-allele is associated with reduced 228 

CAD risk (Table 1), increased expression of PECAM1 in peripheral blood mononuclear cells38 229 

(=0.1199, P=1.38x10-107) and is in LD with rs2070784 and rs6504218 (D’=1.0, r2>0.8 in 1000G 230 

EUR samples), which are eQTL for PECAM1 in aortic endothelial cells (P=4.35x10-13) and stimulated 231 

CD14+ monocytes39 respectively (P<1.7x10-24; Supplementary Table 10)39. PECAM-1 has been 232 

implicated in the maintenance of vascular barrier integrity, breach of which is a sign of inflammatory 233 

response. Failure to restore barrier function contributes to the development of chronic inflammatory 234 

diseases such as atherosclerosis. PECAM-1 expressing endothelial cell monolayers have been shown 235 

to exhibit increased steady-state barrier function, as well as more rapid restoration of barrier integrity 236 

following thrombin-induced perturbation compared to PECAM-1 deficient cells40. Expression of 237 

PECAM-1 has been shown to be correlated with increased plaque burden in athero-susceptible 238 

regions of the aorta in mice41 and also with decreased atherosclerotic area in the aorta overall42. 239 

Together, these findings prioritise PECAM1 as a candidate causal gene for this CAD-associated 240 

region in humans.  241 

 242 

Of the 58 previously established CAD loci3-9, 47 were included on the CardioMetabochip. Forty-five 243 

regions were directionally concordant with the previous reports (two were neutral) and thirty-four of 244 

these 45 (42 SNPs) had at least nominal evidence of association in a fixed effects meta-analysis 245 

(P<0.05) in either our EUR or all ancestry studies with de novo genotyping (Supplementary Table 246 

12). Twenty-three of these formally replicated at a Bonferroni significance level P=0.05/47=0.001). 247 

PHACTR1, CXCL12 and COL4A1-COL4A2 had more statistical support of association (smaller P-248 

values despite fewer samples) in SAS compared with the other ancestries. The PHACTR1 SNP, 249 
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rs9349379, is ancestrally informative, as the A allele frequency ranges between 0.29 in the Taiwanese 250 

and 0.91 in African Americans (Supplementary Table 12). In contrast, the COL4A1-COL4A2 SNP, 251 

rs4773144, had similar allele frequencies across ancestries (EAF=0.56-0.62). The stronger effect size 252 

in SAS (OR[95%CI]=0.91[0.86-0.95] versus 0.98[0.95-1.02] in EUR, heterogeneity P=0.0042) could 253 

suggest gene-environment or gene-gene interactions at this locus. 254 

 255 

We have reported 15 novel CAD-associations, which, together with previous efforts, brings the total 256 

number of CAD-associated regions to 73. In addition to implicating atherosclerosis and traditional 257 

risk factors as mechanisms in the pathobiology of CAD, our discoveries highlight the potential 258 

importance of biological processes active in the arterial wall involving endothelial, smooth muscle 259 

and white blood cells and promote coronary atherogenesis.  260 

 261 

URLs 262 

Data on coronary artery disease / myocardial infarction have been contributed by 263 

CARDIoGRAMplusC4D investigators and have been downloaded from 264 

www.cardiogramplusc4d.org; String database: http://string-db.org; GTEx expression data were 265 

obtained from: www.gtexportal.org; the mouse genome informatics database: 266 

http://www.informatics.jax.org; protein atlas: http://www.proteinatlas.org/; phenoscanner: 267 

www.phenoscanner.medschl.cam.ac.uk; R: www.R-project.org; linkage disequilibrium information: 268 

www.1000genomes.org, http://snipa.helmholtz-muenchen.de/; Gene information: 269 

http://www.ncbi.nlm.nih.gov/gene/5175 270 

  271 
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Figure Legends  420 

Figure 1 Schematic of the study design. The sample-size information is provided as number of 421 

cases/number of controls. Note, samples with de novo genotyping that were also in the 422 

CARDIoGRAMplusC4D study were removed prior to meta-analysis. 1,826 CAD cases and 449 423 

controls from EPIC-CVD with de novo genotyping were also included in CARDIoGRAMplusC4D 424 

and were therefore excluded from the larger meta-analysis. The actual number of EUR individuals 425 

contributed to the meta-analysis of our studies with de novo genotyping and CARDIoGRAMplusC4D 426 

was 14,267 CAD cases and 16,167 controls.†3,704 CAD cases and 3,433 controls from PROMIS 427 

with de novo genotyping were also included in CARDIoGRAMplusC4D and were therefore excluded 428 

from the larger meta-analysis. The actual number of SAS samples contributed to the meta-analysis of 429 

our studies with de novo genotyping and CARDIoGRAMplusC4D was 3,950 CAD cases and 3,581 430 

controls. 431 

 432 

Figure 2 Plot showing the association of ~79,000 variants with CAD (-log10P-value) in up to 88,192 433 

cases and 162,544 controls from the all ancestry fixed effects meta-analysis. SNPs are ordered in 434 

physical position. No adjustments to P-values to account for multiple testing have been made. The 435 

outer track represents the chromosomal number. Blue dots represent known loci and red dots are the 436 

new loci identified in the current study. Each association peak is labeled with the name of the closest 437 

gene(s) to the sentinel SNP. GWAS significance (-log10(P) ~ 7.3). 438 

 439 

  440 
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Table 1 Newly identified CAD-associated genomic regions CAD-association results for the lead SNPs from the European and the all ancestry meta-analyses are reported. 

Note, SNP allele frequencies for each ancestry are provided in, Supplementary Table 5 and in Supplementary Fig. 3 for each of the studies with de novo genotyping. 

Closest gene(s) Variant/alleles Chr:Position (EA AF) European All Ancestries 

  OR [95% CI] P N OR [95%CI] P log10BF N 

ATP1B1 rs1892094C>T 1:169094459 (T 0.50) 0.96 [0.94-0.97] 3.99x10-8 217,782 0.96 [0.94-0.97] 2.25x10-8 6.33 243,623 

DDX59/CAMSAP2 rs6700559C>T 1:200646073 (T 0.47) 0.96 [0.94-0.97] 2.50x10-8 221,073 0.96 [0.95-0.97] 1.13x10-8 6.68 246,913 

LMOD1 rs2820315C>T 1:201872264 (T 0.30) 1.05 [1.03-1.07] 4.14x10-9 214,844 1.05 [1.03-1.07] 7.70x10-10 7.72 240,685 

TNS1a rs2571445G>A 2:218683154 (A 0.39) 1.04 [1.02-1.06] 3.58x10-6 194,254 1.05 [1.03-1.06] 4.55x10-10 8.41 220,047 

ARHGAP26 rs246600C>T 5:142516897 (T 0.48) 1.05 [1.03-1.06] 1.29x10-8 210,380 1.04 [1.03-1.06] 1.51x10-8 6.39 236,223 

PARP12 rs10237377G>T 7:139757136 (T 0.35) 0.95 [0.93-0.97] 1.70x10-7 181,559 0.95 [0.93-0.97] 1.75x10-8 6.32 207,399 

PCNX3 rs12801636G>A 11:65391317 (A 0.23) 0.95 [0.93-0.97] 1.00x10-7 211,152 0.95 [0.94-0.97] 9.71x10-9 6.64 236,985 

SERPINH1 rs590121G>T 11:75274150 (T 0.30) 1.05 [1.03-1.07] 1.54x10-8 207,426 1.04 [1.03-1.06] 9.32x10-8 5.80 233,249 

C12orf43/HNF1A rs2258287C>A  12:121454313 (A 0.34) 1.05 [1.03-1.06] 6.00x10-9 221,068 1.04 [1.03-1.06] 2.18x10-8 6.40 246,901 

SCARB1 rs11057830G>A 12:125307053 (A 0.16) 1.07 [1.05-1.10] 5.65x10-9 177,550 1.06 [1.04-1.09] 1.34x10-8 6.49 203,394 

OAZ2, RBPMS2 rs6494488A>G 15:65024204 (G 0.18) 0.95 [0.93-0.97] 1.43x10-6 205,410 0.95 [0.93-0.97] 2.09x10-8 6.41 228,578 

DHX38 rs1050362C>A 16:72130815 (A 0.38) 1.04 [1.03-1.06] 2.32x10-7 216,025 1.04 [1.03-1.06] 3.52x10-8 6.16 241,858 

GOSR2 rs17608766T>C 17:45013271 (C 0.14) 1.07 [1.04-1.09] 4.14x10-8 215,857 1.06 [1.04-1.09] 2.10x10-7 5.30 231,213 

PECAM1 rs1867624T>C 17:62387091 (C 0.39) 0.96 [0.94-0.97] 1.14x10-7 220,831 0.96 [0.95-0.97] 3.98x10-8 6.03 246,674 

PROCRa rs867186A>G 20:33764554 (G 0.11) 0.93 [0.91-0.96] 1.26x10-8 213,505 0.93 [0.91-0.96] 2.70x10-9 7.11 239,340 

aThese are nonsynonymous SNPs. 
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EA, Effect allele. AF, Effect allele frequency in Europeans. N, Number of individuals in the analysis. Log10BF, log base 10 of the Bayes factor obtained from the MANTRA 

analyses (log10BF>6 is considered significant). There was no convincing evidence of heterogeneity at the new CAD-associated SNPs, Phet ≥ 0.01. P-value for heterogeneity 

across meta-analysed datasets are provided in Supplementary Table 4 and I2 statistics in Supplementary Fig. 3. 
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Table 2 Summary of functional data implicating candidate causal genes in newly identified CAD regions. Genes in region, provides genes in the LD block containing 

the CAD-associated SNP.  Phenotype in murine model, lists the phenotype as provided in the mouse genome informatics database, genes are listed if the phenotype affects 

the cardiovascular system, inflammation   or liver function. eQTLs are listed  where the SNP or a proxy with r2> 0.9 are an eQTL for the listed gene in one of the following refs: 

12, 13, 26, 43, 44, 45, 46,38,47,48,14,49 (refer to Supplementary Table 10 for an extended listing where r2>0.8 between the CAD-associated SNP and the lead eQTL). Candidate genes are 

based on the most likely given the information ascertained on murine phenotype, eQTL, protein expression and any literature information described in the main text. Loci are 

further discussed in the Supplementary Information. 

SNP Genes in region Phenotype in murine model Cis-eQTLs with 

SNP (or proxy 

r2>0.9) 

Proteins expressed 

in SMC, heart, liver, 

blood+ 

Candidate 

causal 

gene(s) 

rs1892094C>T ATP1B1, BLZF1, CCDC181, F5, NME7, 

SELP, SLC19A2 

ATP1B1 (cardiovascular, homeostasis, mortality/aging, 

muscle) F5 (blood coagulation) SELP (cardiovascular, 

coagulation, inflammatory response) 

NME7*, ATP1B1* 

 

ATP1B1, NME7, SELP ATP1B1, NME7 

rs6700559C>T CAMSAP2, DDX59, KIF14  CAMSAP2*, DDX59* CAMSAP2, DDX59, KIF14 CAMSAP2, 

DDX59 

rs2820315C>T IPO9, LMOD1, NAV1, SHISA4, TIMM17A  LMOD1, IPO9* LMOD1 LMOD1 

rs2571445G>A CXCR2, RUFY4, TNS1 CXCR2 (increased IL6, abnormal interleukin level) TNS1* TNS1, RUFY4 TNS1 
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rs246600C>T ARHGAP26, FGF1  None   

rs10237377G>T PARP12, TBXAS1 TBXAS1 (increased bleeding, decreased platelet 

aggregation) 

TBXAS1*  TBXAS1 

rs12801636G>A PCNX3, POLA2, RELA, RNASEH2C, 

SAC3D1, SCYL1, SIPA1, SLC22A20, 

SLC25A45, SNX15, SNX32, SPDYC, 

SSSCA1, SYVN1, TIGD3, TM7SF2, 

TMEM262, VPS51, ZFPL1, ZNHIT2 

CAPN1 (cardiovascular system), CDCA5 (decreased mean 

corpuscular volume),  CFL1 (cardiovascular system), 

EFEMP2 (cardiovascular), MUS81 (cardiovascular 

system), RELA (CVD  others), SCYL1 (small myocardial 

fiber),  

SIPA1* SIPA1  

rs590121G>T GDPD5, KLHL35, SERPINH1 SERPINH1 (hemorrhage) SERPINH1* SERPINH1 SERPINH1 

rs2258287C>A SPPL3, HNF1A-AS1, HNF1A, C12orf43, 

OASL, P2RX7, P2RX4 

HNF1A (increased cholesterol, decreased liver function) 

P2RX4 (abnormal vascular endothelial cell physiology, 

abnormal vasodilation, abnormal common carotid artery 

morphology) 

 C12orf43, SPPL3, P2RX7, 

P2RX4 

 

rs11057830G>A SCARB1, UBC SCARB1 (increased susceptibility to atherosclerosis, 

reduced heart rate, abnormal lipoprotein metabolism 

abnormal vascular wound healing) 

None UBC SCARB1 
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rs6494488A>G ANKDD1A, CSNK1G1, DAPK2, FAM96A, 

KIAA0101, OAZ2, PIF1, PLEKHO2, PPIB, 

RBPMS2, SNX1, SNX22, TRIP4, ZNF609 

PIF1 (abnormal telomere length) ANKDD1A*, 

RBPMS2*, TRIP4* 

TRIP4 TRIP4 

rs1050362C>A AP1G1, ATXN1L, CALB2, CHST4, DHODH, 

DHX38, HP, HPR 

 HP (renal, development of atherosclerosis25) DHODH*, HP*, 

DHX38* 

HP, DHX38, DHODH HP 

rs17608766T>C ARL17A, CDC27, GOSR2, MYL4, WNT9B, 

WNT3 

 GOSR2* GOSR2   

rs1867624T>C DDX5, MILR1, PECAM1, POLG2, TEX2 DDX5 (abnormal vascular development), PECAM1 

(cardiovascular system, liver inflammation) 

PECAM1* PECAM1, TEX2 PECAM1 

rs867186A>G RALY, EIF2S2, ASIP, AHCY, ITCH, 

DYNLRB1, MAP1LC3A,PIGU, HMGB3P1, 

GGT7, ACSS2, NCOA6,  GSS, MYH7B, 

TRPC4AP, EDEM2, PROCR, MMP24, EIF6 

ASIP (cardiovascular system), NCOA6 (cardiovascular 

system), PROCR (abnormal circulatiung C-reactive protein 

and fibrinogen levels; thrombosis/blood coagulation), 

PROCR*, EIF6*, 

ITGB4BP* 

EIF6, ITGB4BP PROCR 

rs6088590 C>T PROCR*, GGT7*, 

MAP1LC3A*, 

ACSS2*, TRPC4AP* 

GGT7  

 

* indicates that the eQTL is identified in one of blood (including peripheral blood mononuclear cells) heart, aorta/coronary artery or live. Note the PCNX3 region also 

encompasses AP5B1, ARL2, CAPN1, CDC42EP2, CDCA5, CFL1, CTSW, DPF2, EFEMP2, EHBP1L1, FAM89B, FAU, FRMD8, KAT5, KCNK7, LTBP3, MAP3K11, MRPL49, 

MUS81, NAALADL1, OVOL1. The DHX38 region also encompasses, IST1, MARVELD3, PHLPP2, PKD1L3, PMFBP1, TAT, TXNL4B, ZFHX3, ZNF19, ZNF23, ZNF821. The 
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PROCR region also includes: FAM83C, UQCC1, GDF5, SPAG4, CEP250, C20orf173, ERGIC3, FER1L4, CPNE1, RBM12, NFS1, ROMO1, RBM39, SCAND1, CNBD2, 

EPB41L1, LINC00657, AAR2, DLGAP4
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Online Methods 

Study participants 

A full description of the component studies with de novo genotyping is given in the Supplementary 

Information and Supplementary Table 1. In brief, the European (EUR) studies comprised 16,093 

CAD cases and 16,616 controls from EPIC-CVD (a case-cohort study embedded in the pan-European 

EPIC prospective study), the Copenhagen City Heart Study (CCHS), the Copenhagen Ischemic Heart 

Disease Study (CIHDS) and the Copenhagen General Population Study (CGPS) all recruited within 

Copenhagen, Denmark. The South Asian (SAS) studies comprised up to 7,654 CAD cases and 7,014 

controls from the Pakistan Risk of Myocardial Infarction Study (PROMIS) a case-control study that 

recruited samples from 9 sites in Pakistan, and the Bangladesh Risk of Acute Vascular Events 

(BRAVE) study based in Dhaka, Bangladesh. The East Asian (EA) studies comprised 4,129 CAD 

cases and 6,369 controls recruited from 7 studies across Taiwan that collectively comprise the 

TAIwan metaboCHIp (TAICHI) Consortium. The African American (AA) studies comprised 2,100 

CAD cases and 5,746 controls from the Atherosclerosis Risk in Communities Study (ARIC), 

Women’s Health Initiative (WHI) and six studies from the Myocardial Infarction Genetics 

Consortium (MIGen).  

Ethical approval was obtained from the appropriate ethics committees and informed consent was 

obtained from all participants. 

 

Genotyping and quality control in studies with de novo genotyping  

Samples from EPIC-CVD, CCHS, CIHDS, CGPS, BRAVE and PROMIS were genotyped on a 

customised version of the Illumina CardioMetabochip (referred to as the “Metabochip+”, Illumina, 

San Diego, USA), in two Illumina-certified laboratories located in Cambridge, UK, and Copenhagen, 

Denmark, by technicians masked to the phenotypic status of samples. The remaining studies were 

genotyped using the standard CardioMetabochip10 in Hudson-Alpha and Cedars Sinai (TAICHI50, 

WHI, ARIC51) and the Broad Institute (MIGen). 
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Each collection was genotyped and underwent QC separately (Supplementary Tables 1 and 2). In 

brief, studies genotyped on the Metabochip+ had genotypes assigned using the Illumina GenCall 

software in Genome Studio. Samples were removed if they had a call rate < 0.97, average 

heterozygosity >±3 standard deviations away from the overall mean heterozygosity or their genotypic 

sex did not match their reported sex. One of each pair of duplicate samples and first degree relatives 

(assessed with a kinship co-efficient > 0.2) were removed.  

Across all studies, SNP exclusions were based on minor allele frequency (MAF) < 0.01, P < 1x10-6 

for Hardy Weinberg Equilibrium or call rate (CR) less than 0.97 (full details are given in 

Supplementary Table 2). These exclusions were also applied centrally to studies genotyped on the 

CardioMetabochip, namely the ARIC, WHI, MIGen and TAICHI studies. Principal component 

analysis (PCA) was applied to identify and remove ancestral outliers. More stringent thresholds were 

adopted for SNPs used in the PCA for TAICHI and those studies genotyped on the Metabochip+, 

namely, CR < 0.99, PHWE < 1x10-4 and MAF < 0.05. In addition, one of each pair of SNPs in LD (r2> 

0.2) was removed, as were variants in regions known to be associated with CAD.  

 

SNP association analyses and meta-analyses 

Statistical analyses were performed in R or PLINK 52 unless otherwise stated.  

We collected sufficient samples, to ensure the study was well powered to detect effect sizes in the 

range of OR=1.05-1.10 which have typically been reported for CAD. With 88,000 cases the study 

would have 88% power to detect an OR=1.05 for a SNP with MAF=0.2 at =5x10-8, assuming a 

multiplicative model on the OR scale. For a lower MAF of 0.1 the study would have 0.93 power to 

detect OR=1.07 at =5x10-8, assuming a multiplicative model. Power calculations were performed 

using Quanto. 

Association with CAD was assessed in studies with de novo genotyping from EUR, SAS, and EA, 

using the Genome-wide Efficient mixed model analysis (GEMMA) approach53. This model includes 
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both fixed effects and random effects of genetic inheritance. CAD (coded 0/1) was the outcome 

variable, up to five principal components and the test SNP, coded additively, were included as fixed 

effects. P-values from the score test are reported. The AA studies were analysed using a logistic 

model in PLINK, with CAD as the outcome variable and SNP coded additively as predictor. The 

covariates used by each study, including the number of principal components are reported in the 

Supplementary Information. Genomic inflation was at most 5% for any given study (Supplementary 

Table 3, Supplementary Fig. 1). A subset of the PROMIS study and EPIC-CVD consortium were 

contributed to the CARDIoGRAMplusC4D 2013 report. To avoid any overlap of individuals in our 

studies with those in CARDioGRAMplusC4D, two analyses of these two studies were performed. 

One analysis included all the samples. A second analysis of the PROMIS and EPIC-CVD studies was 

performed after excluding all samples that had been contributed to the CARDIoGRAMplusC4D study 

and before meta-analyzing our results with the results from CARDIoGRAMplusC4D consortium. The 

CARDIoGRAMplusC4D SNP association results were converted onto the plus strand of GRh37, 

checked for heterogeneity and checked to ensure allele frequencies were consistent with EUR 

populations. 

 

Fixed effects inverse variance weighted meta-analysis was used to combine results across studies in 

METAL54. Heterogeneity P-values and I2 values were calculated and any SNP with P < 0.0001 for 

heterogeneity was removed. We performed two meta-analyses, the first involved just the European 

studies with de novo genotyping and the CARDIoGRAMplusC4D results to minimize ancestral 

diversity. The second involved all studies with de novo genotyping and the CARDIoGRAMplusC4D 

results to maximize sample size and statistical power. Given the ancestral diversity of the component 

studies with de novo genotyping, we also implemented meta-analyses with MANTRA55, a meta-

analysis approach designed to handle trans-ethnic study designs. However, for our studies the data 

were broadly consistent with the results from METAL (Table 1, Supplementary Table 4) and we 

therefore primarily report the fixed effect meta-analysis.  
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Conditional association analyses 

Analyses to test for secondary association signals across seven regions with potential for independent 

signals were performed using GCTA56. GCTA implements a method for conducting conditional 

analyses using summary-level statistics (effect size, standard error, P-value, effective sample size) and 

LD information (r2) between SNPs estimated from a reference panel56. Conditional analyses were 

performed in CARDIoGRAMplusC4D, EUR, SAS, and EAS respectively and the results were 

combined using an inverse-variance-weighted fixed effects meta-analysis approach. The conditional 

analyses were not performed in AA, because the SNP-level case-control counts were not made 

available for ARIC, MIGen, and WHI. 1000Genome Phase3 v5 ethnic-specific reference panel was 

used to provide LD information (r2) for the conditioned SNPs and other SNPs in the test regions for 

each of the 3 ancestries considered in the analyses. As approximately 9% of CARDIoGRAMplusC4D 

samples were SAS and the remainder EUR, in order to calculate LD for this dataset, we sampled with 

replacement the genotypes of 50 individuals from the 1000Genome SAS reference panel and 

combined them with the genotypes of the 503 EUR individuals available in 1000 Genomes.  To 

identify SNPs that are associated with CAD independently of the lead SNP in the test region, the 

association of each SNP in the region was tested conditioning on the most significant SNP in the 

overall meta-analysis of EUR, SAS, EAS and CARIoGRAMplusC4D. The SNPs were identified as 

independent signals for a specific region, if the conditional P≤1x10-4. In each region, we performed 

several rounds of conditional analyses until the conditional P-values >1x10-4 for all SNPs in the 

region. 

eQTL and epigenetic analyses 

The MuTHER dataset contains gene expression data from 850 UK twins for 23,596 probes and 

2,029,988 (HapMap 2 imputed) SNPs. All cis–associated SNPs with FDR<1%, within each of the 14 

newly identified CAD regions (IMPUTE info score >0.8) were extracted from the MuTHER project 

dataset for each of the tissues, LCL (n=777), adipose (n=776) and skin (n=667).  
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The GTEx Project provides expression data from up to 449 individuals for 52,576 genes annotated in 

Gencode v12 (including pseudo genes) and 6,820,472 genotyped SNPs (using the Human Omni5-

Quad array).  

From each resource, we report eQTL signals, which reach the resource-specific thresholds for 

significance described above, for SNPs that are in LD (r2>0.8) with our sentinel SNP. 

In addition to the publicly available MuTHER and GTeX databases imputed to HapMap and 

1000Genomes, respectively, we used a curated database of over 100 distinct eQTL datasets to 

determine whether our lead CAD-associated SNPs or SNPs in high LD with them (r2 > 0.8 in 

Europeans from HapMap or 1000G) were associated with the expression of one or more nearby genes 

in cis57.  Our collated eQTL datasets meet criteria for statistical thresholds for SNP-gene transcript 

associations as described in the original studies. 57 In total, more than 30 different cells/tissues were 

queried including, circulating white blood cells of various types, liver, adipose, skin, brain, breast, 

heart and lung tissues.   Complete details of the datasets and tissues queried in the current work can be 

found in the Supplement Information and Supplementary Table 10, and a general overview of a subset 

of over 50 eQTL studies has been published57.  We first identified all sets of eQTLs in perfect LD (r2 

=1 among Europeans in HapMap or 1000G) with each other for each unique combination of study, 

tissue, and transcript. We then determined whether any of these sets of eQTL were either in perfect (r2 

= 1) or high LD (1>r2> 0.8) with our lead CAD SNP (Supplementary Table 10). 

We required that any eQTL had P<5x10-8 for association with expression levels to be included in the 

eQTL tables. 

 

We examined chromatin state maps of 23 relevant primary cell types and tissues. Chromatin states are 

defined as spatially coherent and biologically meaningful combinations of specific chromatin marks. 

These are computed by exploiting the correlation of such marks, including DNA methylation, 

chromatin accessibility, and several histone modifications58,59. 
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pQTL analyses 

We conducted plasma protein assays in 3,301 healthy blood donors from the INTERVAL study60 who 

had all been genotyped on the Affymetrix Axiom UK Biobank genotyping array and imputed to a 

combined 1000Genomes + UK10K haplotype reference panel61. Proteins were assayed using the 

SomaLogic SomaScan platform, which uses high-specificity aptamer-binding to provide relative 

protein abundances. Proteins passing stringent QC (e.g. coefficient of variation<20%) were log 

transformed and age, sex, duration between venepuncture and sample processing and the first 3 

principal components of genetic ancestry were regressed out. Residuals were then rank-inverse 

normalized before genomewide association testing using an additive model accounting for imputation 

uncertainty.  

 

Enrichment analyses 

Ingenuity pathway analyses 

We used the Core Analysis' function in the Ingenuity Pathway Analysis (IPA) software (Ingenuity 

Systems, Redwood City) to identify canonical pathways enriched with one or more SNPs with a low 

P-value in the all ancestry meta-analysis.   

Modified MAGENTA 

Given the Metabochip comprises a select set of SNPs and lacks complete genomic coverage10, 

MAGENTA, which assumes random sampling of variants from across the genome, could not be 

directly implemented. Therefore a modified version of MAGENTA involving a hypergeometric test to 

account for the chip design was used to test for pathways that were enriched with CAD-associated 

variants11. This approach requires defining two sets of variants; a null set of variants that are not 

associated with CAD and a set that are associated with CAD, referred to as the “associated set”. 

Multiple variants can map to the same gene and still be included in the test. SNPs in LD were pruned 
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out of the association results such that r2 < 0.2 for all pairs of SNPs (based on 1,000 Genomes Project 

data62; Supplementary Table 6) prior to implementation of the modified MAGENTA. The null set was 

defined as the 1,000 remaining QT interval SNPs with the largest P-values (least evidence) for 

association with CAD. The associated set was defined as variants (after LD pruning) that showed 

evidence of association P < 1x10-6. This approach was adopted to select the null and associated sets so 

as to limit the number of variants included in the hypergeometric cumulative mass function, as a large 

number of variants results in an intractable calculation for the binomial coefficients. The observed P-

value from the hypergeometric test is compared to the P-values obtained from 10,000 random sets to 

compute an empirical enrichment P-value. 

Haploreg: H3K27ac-based tissue enrichment analysis 

The associated set as defined for MAGENTA was used for Haploreg analyses and compared to a 

background set of 12,000 SNPs previously associated with any trait at P<1x10-5 (taken from sources 

such as NHGRI-EBI GWAS catalogue). Using data from HaploReg15 we counted the number of SNPs 

with an H3K27ac annotation, or in high LD (r2 > 0.8 from the SNiPA63 EUR 1000 Genomes maps) 

with a SNP with an H3K27ac annotation. The significance of the enrichment in H3K27ac marks from 

a particular tissue was determined by comparing the fraction of associated SNPs with that mark, to the 

fraction of background SNPs with that same mark. A hypergeometric test was used to assign a P-

value to the enrichment. 

 

Data availability 

The full set of results data from the trans-ancestry meta-analysis and the EUR meta-analysis from this 

report is available through www.phenoscanner.medschl.cam.ac.uk upon publication. 

  

http://www.phenoscanner.medschl.cam.ac.uk/
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Study descriptions 

Baseline characteristics of the contributing studies are summarized in Supplementary Table 1. 

The Copenhagen Ischaemic Heart Disease Study (CIHDS) 

This study comprised 2,724 cases with myocardial infarction and other major acute coronary 

syndromes and 2,815 controls matched by age and sex from the Copenhagen General Population 

Study (CGPS) described below. The cases were recruited from Copenhagen University Hospital 

during the period from 1991 to 2009. In addition to a diagnosis of acute coronary syndrome, these 

cases also had stenosis or atherosclerosis on coronary angiography and/or positive results on exercise 

electrocardiography. Cases were classified by World Health Organization International Classification 

of Diseases-Eighth Revision, codes 410 to 414; International Classification of Diseases-Tenth 

Revision, codes I20 to I25, and through review of all hospital admissions and diagnoses entered in the 

national Danish Patient Registry and all causes of death entered in the national Danish Causes of 

Death Registry, as previously described3. 

The Copenhagen General Population Study (CGPS) 

The CGPS is a population-based prospective study initiated in 2003 with ongoing enrolment3. 

Participants were selected on the basis of the national Danish Civil Registration System to reflect the 

adult Danish population age 20 to ≥80 years. Data were obtained from a questionnaire, a physical 

examination, and blood samples including deoxyribonucleic acid extraction. Follow-up was 100% 

complete; that is, no participant was lost to follow-up. As noted above, individuals free of coronary 

heart disease at the time of examination were selected to serve as controls for CIHDS (Copenhagen 

Ischemic Heart Disease Study).  

Copenhagen City Heart Study (CCHS) 

CCHS is a population-based prospective study initiated in 1976 with follow-up examinations from 

1981 to 1983, 1991 to 1994, and 2001 to 20034. Selection of individuals for the CCHS was based on 

the same criteria as for the CGPS. Information on diagnosis of CAD (defined as WHO ICD 8 410 to 

414 and WHO-ICD 10 I20 to I25) was collected and verified from 1976 until 2010 by reviewing all 

hospital admissions and diagnoses entered in the national Danish Patient Registry, and by reviewing 

all causes of death entered in the national Danish Causes of Death Registry4,5. Again, follow-up was 

100% complete for both non-fatal coronary outcomes and mortality.  

European Investigation into Cancer and Nutrition-CVD (EPIC-CVD) 

EPIC is a multi-centre prospective cohort study6 of 519,978 participants (366,521 women and 

153,457 men, mostly aged 35–70 years) recruited between 1992 and 2000 in 23 centres located in 10 

European countries. Participants were invited mainly from population-based registers (Denmark, 

Germany, certain Italian centres, the Netherlands, Norway, Sweden, UK)7. Other sampling 

frameworks included: blood donors (Spain and Turin and Ragusa in Italy); screening clinic attendees 

(Florence in Italy and Utrecht in the Netherlands); people in health insurance programmes (France); 

and health conscious individuals (Oxford, UK)7. About 97% of the participants were of white 

European ancestry. Prevalent CAD was ascertained through self-reported history of MI or angina, or 

registry-ascertained CAD event prior to baseline. EPIC-CVD employs a nested case-cohort design, 

analogous to the EPIC-InterAct study for type-2 diabetes8 which established a common set of 

referents through selection of a random sample of the entire cohort (“subcohort”). Incident CAD cases 



have been defined as fatal and non-fatal MI and other major acute coronary events, according to ICD-

10 codes I20-I25. All centres have recorded cause-specific mortality through mortality registries 

and/or active follow-up, and have ascertained and validated incident fatal and non-fatal CAD through 

a combination of methods (eg, morbidity registers, general practice records, MONICA registries, self-

report, clinical records7). 

Bangladesh Risk of Acute Vascular Events (BRAVE)  

BRAVE is a retrospective case-control study of first-ever confirmed acute myocardial infarction (MI) 

in Bangladesh. Patients (male or female; age between 30-80 years) admitted to the emergency rooms 

of the collaborating hospital in Dhaka, Bangladesh were eligible for inclusion as MI cases if they 

fulfilled all of the following criteria: i) presented within 24 hours of the onset of sustained clinical 

symptoms suggestive of MI lasting longer than 20 minutes, including chest pain and breathlessness; 

ii) had ECG changes indicative of MI (new pathologic Q waves, at least 1 mm ST elevation in any 2 

or more contiguous limb leads or a new left bundle branch block, or new persistent ST-T wave 

changes diagnostic of a non-Q wave MI) with a subsequent confirmation by troponin-I measurements; 

and iii) had no previous cardiovascular diseases; defined as self-reported history of angina, MI, 

coronary revascularisation, transient ischaemic attack, stroke or evidence of CAD on prior ECG or in 

other medical records. Participants were not recruited into BRAVE if any of the following features 

had been evident: i) a previous history of cardiovascular disease (including self-reported MI, angina, 

coronary revascularization, stroke, transient ischaemic attack, or peripheral vascular disease, and, in 

cases, presence of cardiogenic shock); ii) a history of a viral or bacterial infection in the previous 2 

weeks; iii) current hospitalization for acute cerebrovascular events; iv) MI secondary to any surgery; 

v) documented chronic conditions, such as malignancy, any chronic infection, leprosy, malaria or 

other bacterial/parasitic infections, chronic inflammatory disorders, hepatitis or renal failure on past 

medical history; vi) pregnancy or related conditions; or vii) unable to provide consent. Controls were 

hospital based and frequency-matched to cases on age (within 5 year age bands) and sex, and without 

a self-reported history of cardiovascular disease.  

Pakistan Risk of Myocardial Infarction Study (PROMIS) 

PROMIS is an ongoing retrospective case-control study of first-ever confirmed acute MI in Pakistan. 

Since 2005, the study has enrolled close to 18,500 MI cases and equivalent number of controls; the 

present investigation has included all MI cases and controls that had been enrolled until 2011. Patients 

aged 30-80 years who were admitted to the emergency rooms of nine recruitment centres across 

Pakistan 9 were eligible for inclusion as cases if they fulfilled all of the following criteria: symptoms 

within 24 hours of hospital presentation; typical ECG changes; and positive troponin-I test. To 

identify referents from approximately the same source population as the cases, controls were 

identified contemporaneously in the same hospitals as the index cases and selected from among 

people who had no history of CVD and who were: visitors of patients attending the outpatient 

department; patients attending outpatient departments for routine non-cardiac complaints; or non-

blood relatives visiting index MI cases. Controls were frequency-matched to MI cases by sex and age 

(5-year bands). People with recent illnesses or infections were not eligible. 

 

ARIC 

The ARIC study is a multi-center cohort and community surveillance investigation in predominantly 

bi-racial populations (white and African Americans)10.  ARIC recruited 15,792 individuals of which, 



4,266 were African Americans. Individuals were aged 45-64 years and from four communities in 

Forsyth County, N.C., Jackson, M.S., Minneapolis, M.N., and Washington County, M.D. Baseline 

examination occurred between 1987-1989, with four follow-up examinations. Annual follow-up and 

community surveillance identified CAD events including hospitalizations and deaths which were then 

classified by an expert panel of physicians based on review of hospital records, death certificates and 

interviews of next of kin10. CAD events were defined as acute hospitalized MI (definitive or 

probable), definite fatal CAD, or ECG diagnosis of MI. Acute MI was defined based on criteria that 

included cardiac pain, cardiac markers and ECG readings. Events through December 31st, 2007 are 

included. After genotyping quality control and exclusion of prevalent CAD cases, 3204 African 

American participants 366 of which had incident CAD events were included in this study. All 

participants included in these analyses gave consent for genetic studies and data sharing.   

WHI 

WHI is a prospective study investigating post-menopausal women’s health in the U.S11.  A total of 

161,838 women aged 50–79 years old were recruited from 40 US clinical centers between 1993 and 

1998 to participate in an observational study (OS) and in three clinical trials (CT).  Annual (OS) and 

semi-annual (CT) follow-up identified self-reported events which were then classified by an expert 

panel of physicians based on review of hospital records, death certificates and interviews of next of 

kin12.  A subset of 2,200 WHI African American women was selected to be genotyped with the 

CardioMetaboChip by the Population Architecture using Genomics and Epidemiology (PAGE) 

study13 investigators. Women were selected for genotyping on the basis of DNA and biomarker 

availability, and consent. CAD was defined as acute hospitalized MI (definitive or probable) and 

definite fatal CAD.  Acute MI was defined based criteria that included cardiac pain, cardiac markers 

and ECG readings. Follow-up of events in WHI were through August 2009.  The final sample after 

genotyping quality control and exclusion of prevalent self-reported CAD was up to 1954 with 99 

incident CAD events. All participants included in these analyses gave consent for genetic studies and 

data sharing. Additional study descriptions are shown in Supplementary Table 1. 

MIGen 

Involves a conglomerate of six MIGen studies focused exclusively on African American (AA) 

ancestry and included: 565 from Multi-ethnic Study of Atherosclerosis (MESA); 700 from the 

Cleveland Clinic GeneBank; 410 from the International Verapamil SR/Trandolapril Study (INVEST); 

324 from Translational Research Investigating Underlying Disparities in Acute Myocardial Infarction 

Patients' Health Status (TRIUMPH); 469 from Penn Medicine Biobank, and 315 from Emory 

GeneBank .14  

TAIwan metaboCHIp Consortium (TAICHI)  

The TAICHI consortium is formed of seven studies through a collaborative effort between 

investigators based in the U.S. and Taiwan. The main U.S academic sites participating in the TAICHI 

consortium include Stanford University School of Medicine in Stanford, California; Hudson-Alpha 

Biotechnology Institute in Huntsville, Alabama; and Harbor-UCLA in Los Angeles, California. The 

main academic sites in Taiwan include National Health Research Institute (NHRI); National Taiwan 

University Hospital (NTUH); Taipei and Taichung Veteran’s General Hospitals (VGH) and Tri-

Service General Hospital (TSGH).  These investigators have assembled a large, well-phenotyped 

sample set consisting of >13,000 Han Chinese from seven existing studies15-19.    The consortium aims 

to identify genetic determinants of atherosclerosis and diabetes related traits in East Asians and to fine 

map validated loci identified in other race/ethnic groups. 



A majority of coronary artery disease (CAD) cases in TAICHI were ascertained through hospital 

based studies enrolling subjects admitted for coronary angiography and/or clinical complications of 

CAD.  These subjects were labelled as a case if a chart review by a qualified MD (most often a 

cardiologist) revealed that the subject either currently or in the past was suffering from a myocardial 

infarction, an acute coronary syndrome, angina, or demonstrated at least one epicardial coronary 

artery obstruction of >50% on coronary angiogram. A small minority of cases were identified among 

the non-hospital based prospective cohort studies through a self-report of either having suffered an 

MI, having undergone one or more procedures related to clinical complications of CAD, or having an 

ECG diagnostic of a prior q wave myocardial infarction or an ongoing ST-segment elevation MI 

based on the Minnesota Code20.   Subjects who had no previous history of clinical CAD who were 

found to have sub-occlusive disease on angiogram (i.e. some evidence of atherosclerosis but no 

epicardial coronary artery obstruction of >50%) were excluded (i.e. they were neither considered a 

case or a control).   All other subjects were considered controls.  

1. Taiwan Coronary Artery Disease GENetic (TCAGEN) study (PI - Dr. Jyh-Ming Juang) 

is an ongoing cohort study that has been enrolling patients undergoing coronary angiography 

or percutaneous intervention at the National Taiwan University Hospital (NTUH) in the 

setting of either stable angina pectoris or prior myocardial infarction19. Participants are from 

both the north of Taiwan where the main NTU medical school/hospital is located, and from 

the Yulin branch of NTUH, located in south/central Taiwan. The hospital uses an elaborate 

electronic medical record system that provides access to clinic visit notes, diagnostic codes of 

clinic encounters, prescriptions, and laboratory data in a searchable form. Fasting blood 

samples were collected before cardiac catheterization while peripheral blood was collected in 

the catheter lab specifically for buffy coat isolation and DNA extraction.  

2. Taichung CAD (TCAD) study  (PI - Dr. Wayne Huey-Herng Sheu) includes patients with 

a variety of cardiovascular diseases receiving care at the Taichung Veterans General 

Hospital.  Specifically, individuals who were hospitalized for diagnostic and interventional 

coronary angiography examinations and treatment are included in TAI CHI16.   Also included 

in TAI CHI are subjects with a history of myocardial infarction or revascularization of any 

type (percutaneous coronary intervention or coronary artery bypass).   

3. TAiwan Coronary and Transcatheter intervention (TACT) cohort study (PI Dr. Tzung-

Dau Wang) enrolled patients with angina pectoris and objective documentation of 

myocardial ischemia who underwent diagnostic coronary angiography and/or 

revascularization any time after October 2000 at the National Taiwan University Hospital 

(NTUH)18. This cohort is very similar to TCAGEN but was collected independently.   

Participants provided clinically relevant information including use of cardiovascular related 

medication through a standardized questionnaire. Clinically relevant information is also 

available through a comprehensive electronic medical records database that includes 

information on drug use and surgical interventions.  Fasting blood samples were collected 

before cardiac catheterization.  

4. Taiwan Diabetes and RelAted Genetic COmplicatioN (Taiwan DRAGON) cohort 

study  (PI - Dr. Wayne Huey-Herng Sheu) of type 2 diabetes (T2D) at the Veteran’s 

General Hospital in Taichung, Taiwan (Taichung VGH)17.  Participants include individuals 

with either newly diagnoses or established diabetes who visit the diabetes outpatient clinic on 

a regular basis. Subjects with hyperglycemia who do not meet criteria for T2D defined by 

IDF are not included. Individuals participate in a health examination program at Taichung 

VGH are also interviewed. Specialized tests include an oral glucose tolerance tests (OGTT) in 

subjects without an established diagnosis of diabetes. 



5. Taiwan USA Diabetes Retinopathy (TUDR) cohort study (PI - Dr. Wayne Huey-Herng 

Sheu) enrolled subjects with T2D receiving care at Taiching Veteran’s General Hospital, a 

small number of subjects were included from Tri-Service General Hospital (TSGH)17.  All 

TUDR subjects underwent a complete fundoscopic examination to carefully document the 

presence and extent of retinopathy.  To date, a total of 2,222 unrelated T2D subjects with and 

without retinopathy were ascertained and have undergone metabochip genotyping. Of the 

2,222 subjects, 1,201 were T2D without eye diseases, 479 were T2D with NPDR and 542 

T2D with PDR.  In addition to DNA and buffy coats, fasting blood for future measurement of 

serum/plasma biomarkers has also been banked.  A variety of additional clinical related 

phenotypes are available. All 2,222 overlaps with the Taiwan Dragon Study.  

6. Healthy Aging Longitudinal Study in Taiwan (HALST) (PI – Dr. Agnes Chao Hsiung) is 

a population based multi-site cohort study of ambulatory adults aged > 55 years living in 7 

major geographic regions of Taiwan, established by the NHRI21.  The aim of the study is to 

investigate the multidimensional determinants, including lifestyle, genetic, metabolic, and 

inflammatory factors, of an older Asian population. These 7 locations include both urban and 

rural areas: two are in the north (Taipei’s Shilin District and Taoyuan County’s Yangmei 

Township), two in central Taiwan (Miaoli City in Miaoli County and Changhua City in 

Changhua County), two in the south (Puzi, Chiayi County, and Kaohsiung’s Lingya District), 

and one in the east (Hualien City/County). The only exclusion criteria are presence of highly 

contagious diseases, advanced illnesses with limited life span or bedridden status, dementia, 

other advanced neurological deficit, severe hearing loss, and institutionalization in a chronic 

care facility for any reason. Over 5000 subjects have been recruited over a five-year period 

(2008-2012) from seven recruitment sites across the country.  Follow-up in person visits are 

currently ongoing and will continue throughout a second 5-year study cycle scheduled that 

began in 2013 (~1000 subjects / year).  Within each wave, participants are to be followed up 

by telephone contact every year for vital status and for updates on health-related conditions. 

Medical records are requested to confirm the development of any new health conditions. Vital 

status, health claims, health care utilization data are being collected for the cohort on a regular 

basis by linking to the National Death Registry Database and the National Health Insurance 

Database. HALST served as one the main “control” cohorts for this study after exclusions of 

subjects with a self-report of CAD or a ECG diagnostic of prior MI.  

7. Stanford-Asian Pacific Program in Hypertension and Insulin Resistance (SAPPHIRe) 

family based study (PIs – Dr. Thomas Quertermous, Agnes Chao Hsiung, and Wayne 

Huey-Herng Sheu) was established in 1995 with an initial goal of identifying major genetic 

loci underlying hypertension and insulin resistance through linkage in East Asian populations.  

SAPPHIRe was also one of four networks participating the NHLBI’s Family Blood Pressure 

Program (FBPP)15. At the outset, SAPPHIRe involved recruitment sites in the San Francisco 

Bay Area, Hawaii, and Taiwan.  However, a majority of the ~1,700 sibpairs in SAPPHIRe 

were recruited from 3 centers in Taiwan (NTUH, Taipei VGH and Taichung VGH) with 

NHRI being the DCC.  Sibpairs were either highly concordant or discordant for blood 

pressure and a subset underwent an insulin suppression test.  Many metabolic variables 

associated with blood pressure and insulin resistance were examined in the first 5-year 

investigative cycle funded by the NIH (1995-2000).  Further extensive phenotyping through 

return visits and regular follow ups occurred between 2001 and 2008 in the Taiwanese 

SAPPHIRe participants which included echocardiographic and multi-detector row CT 

imaging procedures.    These efforts were facilitated by a programmatic collaboration 

between the NHLBI’s FBPP and the National Health Research Institute in Taiwan. Like 



HALST, SAPPHIRe served predominantly as a “control” cohort in this study.  Only one sib 

per family was included as a control in this study.    

 

Two of the TAICHI studies (Taiwan DRAGON and TUDR) were T2D cohorts and so T2D cases that 

had been diagnosed with CAD were included as cases in the CAD analyses, while the remaining T2D 

samples were included as controls.  

 

 

  



Pathway and network analyses 

Modified MAGENTA 

Given the Metabochip comprises a select set of SNPs and lacks complete genomic coverage22, 

MAGENTA, which assumes random sampling of variants from across the genome, could not be 

directly implemented. Therefore a modified version of MAGENTA involving a hypergeometric test to 

account for the chip design was used to test for pathways that were enriched with CAD associated 

variants23. This approach requires defining two sets of variants; a null set of variants that are not 

associated with CAD and a set that are associated with CAD, referred to as the “associated set”. 

Multiple variants can map to the same gene and still be included in the test. SNPs in LD were pruned 

out of the association results such that r2 < 0.2 for all pairs of SNPs (based on 1,000 Genomes Project 

data24; www.1000genomes.org; Supplementary Table 6) prior to implementation of the modified 

MAGENTA. The null set was defined as the 1,000 remaining QT interval SNPs with the largest P-

values (least evidence) for association with CAD. The associated set was defined as variants (after LD 

pruning) that showed evidence of association P < 1x10-6. This approach was adopted to select the null 

and associated sets so as to limit the number of variants included in the hypergeometric cumulative 

mass function, as a large number of variants results in an intractable calculation for the binomial 

coefficients. The observed P-value from the hypergeometric test is compared to the P-values obtained 

from 10,000 random sets to compute an empirical enrichment P-value. 

 An analysis of European, and all ancestry meta-analyses are reported. A total of 47,468 SNPs 

(of which 2,937 were QT interval SNPs) mapped to 11,190 genes and could be included in the 

European analysis, whilst 61,223 SNPs (3,403 of which were QT interval SNPs) mapped to 11,904 

genes were included in the all ancestry analysis.  Within the null set of the European analysis 873 

genes were covered by the 1,000 null SNPs, whilst within the associated set 73 genes were covered by 

76 SNPs. For the all ancestry analysis, 887 genes were covered by the 1,000 null SNPs and 78 genes 

were covered by 85 SNPs in the associated set. Sensitivity analyses to specific parameters used in the 

modified MAGENTA analyses were assessed. Sensitivity to the P-value threshold for inclusion in the 

associated set of variants was tested at P<10-5, P < 10-7; the number of variants included in the null set 

of variants was set to 900 and 1,100; known CAD regions (identified in the NIH Catalog of Published 

Genome-Wide Association Studies, https://www.genome.gov/26525384) were removed; the newly 

identified CAD loci were removed; the COL4A1 and COL4A2 genes that appear in the associated sets 

for several enriched pathways were excluded and the number of random sets used to calculate the 

empirical enrichment P-value by was changed to 1,000 and 100,000 random sets. 

 Seven databases (BioCarta www.biocarta.com/genes/indexasp, Kyoto Encyclopedia 

of Genes and Genomes [KEGG], www.genome.jp.kegg,  Ingenuity, www.ingenuity.com, Panther, 

Panther Biological Processes and Panther Molecular Functions www.pantherdb.org,  and Reactome, 

www.reactome.org) comprising 1,558 pathways, were tested for enrichment of genes associated with 

CAD. There were 23 pathways (18 independent) with P<0.01 from the European only pathway 

analysis and 19 pathways (16 independent) with P<0.01 from the all ancestry pathway analysis. (A 

more stringent significance threshold of p<0.01 was used rather than the more conventional P≤0.05 so 

as to minimise the number of enriched pathways identified.) Ten pathways were in common between 

these analyses. Independence of pathways were determined by pathway gene content, if a pathway 

was a subset of another then it was deemed dependent. For example, the Reactome cell surface 

interactions at the vascular wall pathway (93 genes) is contained in the Reactome hemostasis pathway 

(272 genes). The chylomicron mediated lipid transport pathway (17 genes) is contained in the 

http://www.1000genomes.org/
https://www.genome.gov/26525384
http://www.biocarta.com/genes/indexasp
http://www.genome.jp.kegg/
http://www.pantherdb.org/
http://www.reactome.org/


Reactome lipoprotein metabolism pathway (27 genes), which is itself contained in the Reactome 

metabolism of lipids and lipoproteins pathway (228 genes). 

The strongest evidence for enrichment in the European only analysis was for the KEGG glycerolipid 

metabolism pathway (49 genes, P<3x10-5). The strongest evidence for enrichment from the all 

ancestry analysis was shown by the Reactome lipoprotein metabolism pathway (27 genes, P<3x10-5). 

Generally pathways involved in lipid metabolism were the most enriched (11 of the 32 with P<0.01 in 

the European or all ancestry analysis). 

 The sensitivity analyses revealed that changing the number of random sets to 1,000 or 

100,000 instead of 10,000 as used in the main analysis, resulted in the same pathways being identified 

in the European and the all ancestry analyses (P<0.01). Exclusion of COL4A1/2 from the associated 

set resulted in fewer pathways being enriched, however, all but one of those enriched for the all 

ancestry pathway analysis were identified by the main analyses. Inclusion of less (P<10-7) associated 

variants resulted in the loss of several pathways that were identified by the main analysis. Use of less 

associated variants (P<1x10-7) identified fewer pathways as expected, however, most of these were 

identified by the main analysis. A more liberal P-value threshold (P<1x10-5) for inclusion of variants 

in the associated set produced more enriched pathways than the main analysis, with most of the 

pathways identified by the main analysis being detected. The all ancestry sensitivity analysis with 

more associated variants detected several unique pathways. Use of less null variants (N=900) 

generally identified the same pathways as the main analysis. However, inclusion of more variants in 

the null set (N=1,100) resulted in an attenuation of pathways that were enriched. Most pathways 

identified under this sensitivity were detected by the main analysis. Removal of known and novel 

CAD loci generally resulted in less pathways being identified. The pathways found to be enriched 

from the sensitivity analyses that were not detected by the main analyses did not give additional 

insights into novel biological pathways involved with CAD. Three positive control pathways were 

also tested for enrichment of variants associated with CAD (Supplementary Table 7). The CAC and 

CAD pathways were significantly enriched for variants associated with CAD (CAC pathway P-value 

range: 0.00-1x10-5; CAD pathway P = 0.00 for all analyses). 

 

Ingenuity pathway analyses 

We used the Core Analysis' function in the Ingenuity Pathway Analysis (IPA) software 

(Ingenuity Systems, Redwood City) to identify canonical pathways enriched with one or more SNPs 

with a low P-value in the all ancestry meta-analysis.  IPA mapped 41,480 of the ~78,954 SNPs in our 

meta-analysis to ~8,894 RefSeq genes (i.e. the reference set of genes).  Given the ~79,000 SNPs 

examined were primarily preselected candidate SNPs for association with CAD or its risk factors22 

and CAD has a complex genetic architecture the appropriate  P-value cut-off to select SNPs for 

inclusion in the pathway analysis was unclear25,26. Therefore, six P-value thresholds (5x10-7, 5x10-6, 

5x10-5, 0.0005, 0.005, and 0.05) were considered. The number of focus genes increased as the P-value 

threshold was lowered (76, 142, 228, 402, and 909, 2,439 for the six P-value thresholds).  IPA uses a 

right-tailed Fisher Exact Test to test for statistically significant over-representation of focus genes in a 

given canonical pathway among the genes with SNPs with low P-values compared to the reference set 

of genes.  

 We also used the IPA to identify potential upstream regulators of genes with SNP(s) with low 

P-values 



[http://pages.ingenuity.com/rs/ingenuity/images/0812%20upstream_regulator_analysis_whitepaper.pd

f].  Upstream regulators were not necessarily represented by SNPs on the Metabochip but could still 

be expected to play an important role in the pathogenesis of CAD.      

 

 

The use of a liberal P-value thresholds in IPA revealed evidence of enrichment for the, sildenafil, 

PPARα/RXRα Activation, Protein Kinase A signaling, and the Axonal Guidance Signaling pathways 

(Supplementary Table 8).  We note analyses of the CARDIoGRAM GWAS data with only partial 

overlap with subjects examined here and using a different gene-set enrichment analysis algorithm also 

identified the axonal guidance pathways as relevant to CAD27.  While axon guidance pathways 

modulate diverse biological phenomena within the nervous system, there is growing evidence that 

neural guidance cues play important roles outside the nervous system.  For example, Netrin-1 is 

secreted by macrophage foam cells in atherosclerotic plaques and acts to inhibit emigration of these 

cells out of lesions by causing dysregulation of the actin cytoskeleton28 and semaphorin 3A, expressed 

in coronary artery endothelial cells, potently inhibits chemokine-directed migration of human 

monocytes29,30. 

 

The tests for enrichment of genes associated with CAD23 (Supplementary Tables 6 and 7) and 

analyses using the Ingenuity Pathway Analysis (IPA) software (Supplementary Table 8) identified 

known CAD associated pathways, such as metabolism of lipids and lipoproteins, farnesoid X receptor 

(FXR)/retinoid X receptor (RXR) activation and liver X receptor (LXR)/RXR activation. Evidence of 

enrichment using IPA with a P=0.05 cut-off was obtained for a number of pathways including the 

PPARα/RXRα Activation, and Protein Kinase A signaling pathways (P=3.98x10-11 and 3.16x10-11, 

respectively) which could indicate new areas of biology to investigate.  



Further information on the new CAD gene regions 

ATP1B1 

The sentinel CAD associated SNP, rs1892094, is located at intron 3 of the ATP1B1 gene, 

encoding for the Na+/K+ ATPase beta subunit 1. Several GWASs have identified common 

variants at this locus associated with electrocardiographic parameters, including QT interval31-

33. However, the implicated variants are not in LD with rs1892094 (r2<0.2, 1000 Genomes 

EUR). The CAD SNP is however, associated with expression of ATP1B1 in atherosclerotic root 

(P=5.24x10-24)34. A recent study has reported an association of the region with pulse pressure35 

with a SNP (rs7519279) that is in LD with the CAD associated SNP (r2=0.44, D’=0.98 in 

1000Genomes EUR). In mouse, mutations in this gene have resulted in increased heart mass 

and cardiac hypertrophy, which could suggest a common mechanism. Together these findings 

make ATP1B1 an interesting candidate gene.  

 

Expression studies, however, also highlight NME7 as a possible candidate. The CAD SNP 

rs1892094 is associated with NME7 gene expression levels in LCLs (P=4.82x10-13) adipose 

(P=9.46x10-14)36, aorta (P=2.39x10-14)37, peripheral blood mononuclear cells (P=7.98x10-18)38 

and monocytes (P=1.1×10-11)39. NME7 encodes the protein NME/NM23 family member 7 that 

is found in high abundance in many tissues including liver and kidney. However, there is no 

compelling cardiovascular phenotypes reported for this gene in mouse and its possible gene 

function with regards to the pathobiology of cardiovascular disease is elusive.  

 

TNS1 

The non-synonymous CAD associated SNP, rs2571445 (W1197R) has previously been 

associated with pulmonary function40-42. Repapi et al. (ref 40), also showed TNS1 was 

expressed in lung tissue, bronchial epithelial cells, airway smooth muscle cells and peripheral 

blood mononuclear cells in human. The CAD risk allele is associated with increased 

expression of TNS1 in adipose (=0.12, P=8.88x10-10)36 and peripheral blood (P=1.81x10-

24)43. The encoded protein is found in many tissues including smooth muscle cells and heart. 

Animal models have shown that this gene causes abnormal kidney morphology, kidney 

failure and abnormal renal glomerulus morphology and decreased renal plasma flow rate.  

 

ARHGAP26 

The CAD risk allele, rs246600-T (P=1.51x10-8; OR[95%CI]=1.04[1.03-1.06]) maps to an 

intron of Rho GTPase-Activating Protein 26 (ARHGAP26) a region that has been associated 

with triglycerides, type 2 diabetes and BMI. These variants however are not in LD with 

rs246600, the CAD associated SNP. However, this gene remains a very interesting candidate 

because the protein encoded by this gene is a GTPase activating protein that binds to focal 

adhesion kinase (FAK), a protein involved in the signaling cascades that regulate the 

organization of the actin-cytoskeleton, and mediates the activity of the GTP binding proteins 

RhoA and Cdc4244, which represent proteins involved in the regulation and timing of cell 

division, morphology, migration and endocytosis.  These processes may be relevant to the 

migration of fibroblasts and smooth muscle cells in the arterial vessel wall in response to the 



deposition of vessel wall plaque as has been recently shown for the TCF21 CAD 

susceptibility locus45. 

PARP12 

We have shown that rs10237377-T confers protection from CAD (P=1.75x10-8, 

OR[95%CI]=0.95[0.93-0.97]). This variant (or a tag r2>0.8) has not been associated with 

another trait as GWS to date but it is an eQTL for Thromboxane A Synthase 1 (TBXAS1) in 

whole blood (P=3.09x10-71)43. TBXAS1, catalyzes the conversion of the prostaglandin 

endoperoxide into thromboxane A2, a potent vasoconstrictor and inducer of platelet 

aggregation46. TBXAS1, has been implicated in reduction of CAD complications in a recent 

trial47. The gene has also been associated with thromboxane synthetase deficiency a rare 

bleeding disorder (OMIM). In mouse, mutations in TBXAS1 have resulted in increased 

bleeding and decreased platelet aggregation. Together these findings suggest that TBXAS1 

could be a candidate causal gene in the region through platelet aggregation mechanisms. 

 

SERPINH1 

rs590121-T maps to an intron of  SERPINH1 and we show is associated with increased risk of 

CAD (Table 1; OR=1.05[1.03-1.07], P=1.54x10-8). This SNP is in LD with rs6704 (D’=1, 

r2=0.86) which is an eQTL for SERPINH1 in whole blood (P=3.3x10-22). This gene encodes a 

member of the serpin superfamily of serine proteinase inhibitors. The encoded protein is 

found in smooth muscle cells, is localized to the endoplasmic reticulum and plays a role in 

collagen biosynthesis as a collagen-specific molecular chaperone. Autoantibodies to the 

encoded protein have been found in patients with rheumatoid arthritis.  

The CAD associated SNP is also an eQTL for a neighbouring gene, GDPD5, in whole blood 

(P=8.69x10-10) 43 and peripheral blood mononuclear cells (P=2.22x10-14)38, however, the LD 

between the CAD associated SNP and the top eQTL is low r2<0.1. GDPD5 protein is found in 

many tissues including liver and kidney. 

 

C12orf43/HNF1A 

The C12orf43 region harbours three SNPs in the EUR studies and four in the all ancestry 

(five in total) that are associated with CAD at genome-wide significance (Supplementary 

Table 4). rs2258287, the sentinel SNP in EUR is located about 2Kb upstream of C12orf43. 

The A allele increases risk of CAD (OR[95% CI]=1.05[1.03-1.06], P=6x10-9) and has 

previously been associated with increased LDL-C and total cholesterol levels (P=6.66x10-17)2.  

rs2258287 is also associated in the all ancestry analyses (P=2.18x10-8) however rs2244608 

has a modestly smaller P-value (P=1.57x10-8). These SNPs are not in LD in African 

ancestries (r2=0.12, D’=0.65, 1000G AFR), East Asians (r2=0.14, D’=0.8, 1000G) or South 

Asians (r2=0.38, D’=0.7 1000G SAS) and are in moderate LD in Europeans (r2=0.68, D’=0.84 

in 1000G EUR). These SNPs or strong proxies (r2>0.8) were associated with decreased C-

reactive protein (P=6.66x10-17) 48,49, increased gamma glutamlytransferase levels (P=8.30x10-

38) 50 and activity (P=6.66x10-17)51. rs2244608 is intronic in the HNF1A gene. HNF1A encodes 

hepatocyte nuclear factor 1 homeobox A, a transcription factor highly expressed in the 



digestive system and liver, which regulates many genes involved in a wide range of biological 

processes, including lipid and glucose transport and metabolism, and coagulation pathways. 

However, HNF1A is perhaps better known as a gene containing low-frequency variants 

causing maturity onset diabetes of the young (MODY3), a Mendelian form of diabetes caused 

by low-frequency dominant mutations. A tightly correlated missense variant in HNF1A 

(rs1169288, r2=0.96, D’=0.99 with rs2244608 in 1000G EUR) is predicted to have functional 

effects on HNF1A. 

SCARB1 

The CAD and HDL associations in the SCARB1 region are likely to be independent as neither 

of our CAD associated SNPs in SCARB1 (rs11057830 and rs11057841) were in LD with the 

sentinel HDL-C associated SNP, rs838880, (r2=0.02, D’=0.6 in 1000 Genomes CEU samples; 

Supplementary Fig. 6).  

To further test the CAD and HDL associations, the summary statistics for major lipids2 (joint 

analysis of metabochip and GWAS data 

http://csg.sph.umich.edu//abecasis/public/lipids2013/) made available by the Global Lipids 

Genetics Consortium were downloaded and used for the conditional analyses at the SCARB1 

region. The association of rs11057830 with CAD remained after conditioning on the HDL 

signal (P=1.30x10-8: note, rs838880, a SNP in strong LD with the sentinel HDL SNP, r2=0.83, 

D’=0.95 in the 1000G CEU samples, was used as rs838876 was not genotyped on the 

Metabochip). The association of rs838876 with HDL remained (P=1.15x10-35, =-0.049) after 

conditioning on the CAD associated SNP, rs11057830.  

The unconditional associations of the above mentioned SNPs with CAD, HDL, LDL and TG. 

 

CAD SNP 

rs11057830 A/G 

Reported HDL SNP 

rs838876 G/A 

Metabochip Tag of 

HDL SNP rs838880 
T/C 

Top TG SNP 

rs10846744 C/G 

 (P-value) 

CAD 0.0623 (1.34x10-8) -- 0.0153 (0.055) 0.0524 (5.857x10-7) 

HDL -0.0181 (0.0018) -0.049 (7.33x10-33) -0.048 (6.38x10-32) -0.0145 (0.009) 

LDL 0.0253 (2.58x10-5) 0.003 (0.44) 0.0006 (0.88) 0.0253 (4.654x10-5) 

TG 0.0220 (8.34x10-5) 0.0052 (0.38) 0.0059 (0.31) 0.0236 (2.218x10-5) 

Note the effect allele/non-effect alleles are listed after the SNP name. 

In contrast, there is no evidence of association in the region after conditioning on the top 

CAD SNP rs11057830, which is also the top LDL SNP, in this region and is in high LD with 

the top TG SNP rs10846744 (r2=0.94 in 1000 Genome phase 3 EUR samples).  Given there is 

evidence of association with LDL-C and triglycerides at the CAD associated SNPs, this 

suggests that the SCARB1 CAD association may be mediated via pro-atherogenic lipids. 

 

 



DHX38 

The DHX38 region has previously been associated with increased total and LDL cholesterol52. 

Indeed, rs2000999-A, the cholesterol associated SNP, was associated with CAD in our data, 

but with less evidence (P=6.8x10-7, OR[95% CI]=1.04[1.03-1.06]) than the SNPs that map to 

DHX38 and was not convincingly associated with CAD after conditioning on rs1050362 

(P>0.001). In addition to the cholesterol associations, the DHX38 region has been reported to 

be associated with metabolites (tyrosine, phenylalanine/tyrosine ratio and glycoprotein)53,54, 

ischemic stroke55, atrial fibrillation56 and Kawasaki disease57, however the SNPs involved are 

not in LD with the CAD associated SNPs (r2<0.15) suggesting these associations act through 

different causal pathways to the CAD association. 

 

GOSR2 

Within the GOSR2 region, the CAD risk increasing allele rs17608766-C (OR[95% 

CI]=1.07[1.04-1.09]) has previously been reported to be associated with increased SBP58 and 

increased pulse pressure.59  It has also been associated with expression of GOSR2 in liver60,61 

and reduced expression in brain, cerebellum and temporal cortex.62 The association with CAD 

is likely to be through blood pressure and so the neighboring gene WNT9B also makes an 

interesting candidate. The kidney has an important role in blood pressure regulation. WNT9B 

protein shows highest expression in kidney (human protein atlas) and is implicated in kidney 

development. In mouse, mutation in the orthologous gene result in abnormal kidney 

development. Canonical Wnt9b signaling balances progenitor cell expansion and 

differentiation during kidney development. 

 

PROCR 

The CAD-associated SNP, rs867186 (or a SNP in strong LD r2>0.8 in 1000G EUR) is 

associated with expression of PROCR across a range of tissues including, atherosclerotic 

aortic root34, liver60, skin and subcutaneaous adipose tissue36 and transformed fibroblasts37 

(Supplementary Table 8, Supplementary Figure 8). While it is also in LD with the top eQTL 

for EIF663 and ITGB4BP39 in monocytes, PROCR remains a plausible candidate gene for the 

CAD association. 

 

The complexity underpinning the PROCR pathway is highlighted by its apparently 

paradoxical effects to reduce activity of the protein C pathway and increase risk of venous 

thrombosis, but decrease risk of CAD. Future studies will seek to elucidate this pathway, 

noting that previous studies have also highlighted a role of the EPCR in influencing vascular 

permeability and inflammation64, which may be independent of its thrombotic effects. 
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Supplementary Tables



Supplementary Table 1 (a) Study-specific sample quality control exclusions and baseline characteristics of the studies with de novo genotyping. (b) Study-

specific definitions of disease outcome (CAD). 

Collection 

 

Recruitment 

Country 

Study 

design 

Disease 

Outcome 

N 

samples 

failed 

QC 

N related 

samples 

removed 

N ancestry 

outliers 

removed 

N cases (% male) N controls (% 

male) 

Mean (SD) 

age  

European          

EPIC-

CVD 

UK, Germany, 

Netherlands, 

Sweden, 

Norway, France, 

Spain, Greece, 

Italy 

Case-cohort CAD 231 475 616 11,391 (60) ** 7,251 (35) ** 59.3 (8.9) 

[56.5 

(10.1)]* 

CCHS 

Denmark 

(Copenhagen) 

Prospective CAD 122 212 13 
1,999 (52) 6,562 (42) 

66.1 (10.8) 

[57.9 

(15.1)]*  

CIHDS 
Denmark 

(Copenhagen) 

Case series ACS 106 163  8 2,703 (73) NA 60.4 (11.8)* 

CGPS 
Denmark 

(Copenhagen) 

Prospective N/A 120 58 6 NA 2,803 (44) 58.0 (12.6) 

South 

Asian 

         

PROMIS 
Pakistan (8 

centres) 

Case/Control AMI 385 264 2 5,833 (84) ** 5,369 (81) ** 53.2 (12.3) 



BRAVE 
Bangladesh 

(Dhaka) 

Case/Control AMI 63 111 9 1,821 (88) 1,645 (89) 48.5 (15.9) 

African 

American 

         

ARIC 

(females) 

USA Prospective CAD NA NA NA 192 (0) 1840 53.3 (5.7) 

ARIC  

(males) 

USA Prospective CAD NA NA NA 174 (100) 998 53.6 (6.0) 

WHI USA Prospective CAD NA 0 2 99 (0) 1855 60.8 (6.8) 

MIGen USA Case/Control CAD 85 60 0 1,635 (NA) 1,053 (NA) NA 

East 

Asian 

         

TAICHI 

Taiwan Case/Control CAD 797 1,312 4 4,129 (78) 6,369 (53) 66.6 (11.3) 

[64.4 

(12.5)]* 

*Mean age at diagnosis of CAD rather than baseline age at recruitment is given. ** These are the numbers of samples genotyped and passing QC. A subset of 

the PROMIS samples (3,704 CAD cases and 3,433 controls) and the EPIC-CVD samples (1,830 CAD cases and 449 controls) had been included in the 

CARDIoGRAMplusC4D discovery effort and were therefore not included in the meta-analyses with CARDIoGRAMplusC4D. Note, 21 samples were 

dropped from CIHDS and 12 from CGPS as they were identical to samples found in CCHS. 

  



Supplementary Table 1(b)  

Study Case definition 

MIGen CAD defined as acute myocardial infarction, >50% stenosis in coronary artery on coronary angiography, abnormal stress test, or 

unstable angina diagnosis 

ARIC CAD, defined as acute hospitalized MI (definitive or probable), definite fatal CAD, or ECG diagnosis of MI, validated by review of 

hospital records, death certificates and interviews of next of kin 

BRAVE Acute MI within the preceding 24 hours 

CCHS CAD, defined as ICD10 I20-I25, from morbidity and mortality registries 

CGPS CAD, defined as ICD10 I20-I25, from morbidity and mortality registries 

CIHDS MI or other major acute coronary syndromes plus stenosis or atherosclerosis on coronary angiography and/or positive results on exercise 

electrocardiography. 

EPIC-CVD CAD, defined as ICD10 I20-I25, ascertained and validated through various methods (morbidity registers, general practice records, 

MONICA registries, self- report, clinical records) 

PROMIS Acute MI within the preceding 24 hours 

TAICHI CAD, defined as either currently or in the past suffering from an MI, an ACS, angina, or demonstrated at least one epicardial coronary 

artery obstruction of >50% on coronary angiogram. 

WHI CAD, defined as acute hospitalized MI (definitive or probable), definite fatal CAD, or ECG diagnosis of MI, validated by review of 

hospital records, death certificates and interviews of next of kin 

ACS = acute coronary syndrome; CAD = coronary artery disease; ECG = electrocardiogram; MI = myocardial infarction. Similar CAD definitions were used 

by the CARDIoGRAMplusC4D: Supplementary Table 2 of reference 3. 



Supplementary Table 2 Summary of study specific SNP genotype quality control for studies with de novo genotyping. The CardioMetabochip+ genotypes 

209,818 SNPs, of which 209,529 map to the autosomes, while the CardioMetabochip includes 196,725 SNPs of which 196,479 map to the autosomes. 

Collection Genotyping 

array 

HWE P-

value 

threshol

d 

SNP call 

rate 

threshol

d 

#SNPs with 

no calls 

# 

monomorphi

c snps 

Number of SNPs 

removed call 

rate/HWE/MAF<0.

01 

Number of 

SNPs 

passing 

QC 

        

European        

EPIC-CVD CardioMetabo+ 1x10-6 0.97 1,403 25,192 48,322 134,612 

CCHS CardioMetabo+ 1x10-6 0.97 1,374 37,152 35,093 135,910 

CIHDS/CGPS CardioMetabo+ 1x10-6 0.97 1,387 42,708 29,307 136,127 

South Asian        

PROMIS CardioMetabo+ 1x10-6 0.97 1,149 21,302 55,491 131,587 

BRAVE CardioMetabo+ 1x10-6 0.97 1,019 52,407 25,485 130,618 



African 

American 

       

ARIC (males) CardioMetabo 1x10-6 0.95 NA NA NA 143,615 

ARIC  

(females) 

CardioMetabo 1x10-6 0.95 NA NA NA 143,473 

WHI CardioMetabo 1x10-6 0.95 NA NA NA 145,132 

MIGen CardioMetabo 1x10-6 0.97 535 10,940 37,019 148,231 

East Asian        

TAICHI CardioMetabo 1x10-6 0.97 5,787 (<95%) 46,543 39,092 105,834 

 

 



Supplementary Table 3 Inflation factors for studies with de novo genotyping. Lambda represents the 

inflation of the test statistics across all variants that passed QC in a study. Given that the 

CardioMetabochip was a customised genotyping array that included fine-mapping of previously 

established CAD loci and not a random selection of SNPs from across the genome, we also calculated 

inflation factors having excluded known CAD regions. The Lambda (noCAD) have had the variants 

that map to one of the 47 previously published CAD regions (or within 1Mb) of that region. QQ plots 

of the association statistics are provided in Supplementary Figure 1.  

Collection Association model Lambda Lambda (noCAD) # PCs 

European     

EPIC-CVD LMM 1.03 0.99 5 

CCHS LMM 1.00 0.98 0 

CIHDS/CGPS LMM 1.05 0.99 1 

South Asian LMM 1.10 1.03 3 

PROMIS Logistic 1.07 1.03 1 

BRAVE Logistic 1.06 1.04 1 

African American     

WHI Logistic 0.97 0.97 10 

MIGen Logistic 1.06 1.05 10 

ARIC (males) Logistic 1.03 1.01 10 

ARIC  (females) Logistic 1.04 1.04 10 

East Asian     

TAICHI LMM 1.09 1.05 5 

LMM = linear mixed model as implemented in GEMMA. Logistic = logistic regression model  



Supplementary Table 4 Results of CAD association tests from the European and All ancestry meta-analyses for SNPs with P<5x10-8 at the new loci.  

Closest gene(s) SNP Chr:Position Effect allele 

(AF) 

European collections All collections 

OR [95% CI] P Phet OR [95% CI] P Phet log10B

F 

ATP1B1 

rs1892094C>T 1:169094459 T (0.50;0.48) 0.96 [0.94-0.97] 3.99x10-8 0.86 0.96 [0.94-0.97] 2.25x10-8 0.83 6.33 

rs10919065G>T 1:169093557 T (0.43;0.43) 1.05 [1.03-1.06] 1.57x10-8 0.72 1.04 [1.02-1.05] 9.28x10-7 0.11 5.06 

 rs1200159C>T 1:169100241 T (0.43;0.42) 1.05 [1.03-1.06] 3.40x10-8 0.72 1.04 [1.02-1.05] 1.90x10-6 0.20 4.68 

DDX59/CAMSAP

2 

rs6700559C>T 1:200646073 T (0.47;0.47) 0.96 [0.94-0.97] 2.50x10-8 0.14 0.96 [0.95-0.97] 1.13x10-8 0.51 6.68 

LMOD1 

rs2820315C>T 1:201872264 T (0.30;0.29) 1.05 [1.03-1.07] 4.14x10-9 0.01 1.05 [1.03-1.07] 7.70x10-10 0.02 7.72 

rs2819348T>C 1:201884952 C (0.34;0.33) 1.05 [1.03-1.06] 2.83x10-8 0.02 1.05 [1.03-1.06] 1.77x10-8 0.01 6.42 

(nsSNP) TNS1 rs2571445G>A 2:218683154 A (0.39;0.39) 1.04 [1.02-1.06] 3.58x10-6 0.86 1.05 [1.03-1.06] 4.55x10-10 0.01 8.41 

ARHGAP26 rs246600C>T 5:142516897 T (0.48;0.46) 1.05 [1.03-1.06] 1.29x10-8 0.41 1.04 [1.03-1.06] 1.51x10-8 0.36 6.39 

PARP12 rs10237377G>T 7:139757136 T (0.35;0.38) 0.95 [0.93-0.97] 1.70x10-7 0.13 0.95 [0.93-0.97] 1.74x10-8 0.34 6.32 

PCNX3 rs12801636G>A 11:65391317 A (0.23;0.25) 0.95 [0.93-0.97] 1.00x10-7 0.22 0.95 [0.94-0.97] 9.72x10-9 0.48 6.64 

SERPINH1 rs590121G>T 11:75274150 T (0.30;0.31) 1.05 [1.03-1.07] 1.54x10-8 0.47 1.04 [1.03-1.06] 9.32x10-8 0.05 5.80 

C12orf43/HNF1A 

rs2258287C>A 12:121454313 A (0.34;0.37) 1.05 [1.03-1.06] 6.00x10-9 0.10 1.04 [1.03-1.06] 2.18x10-8 0.13 6.40 

rs2708081C>T 12:121463288 T (0.48;0.47) 0.96 [0.94-0.97] 1.02x10-8 0.32 0.96 [0.95-0.98] 1.56x10-7 0.28 4.99 

rs3213545G>A 12:121471337 A (0.31;0.32) 1.04 [1.03-1.07] 2.50x10-8 0.22 1.04 [1.03-1.06] 4.81x10-8 0.43 6.13 



rs2244608A>G 12:121416988 G (0.34;0.34) 1.04 [1.03-1.06] 1.96x10-7 0.30 1.04 [1.03-1.06] 1.57x10-8 0.71 6.42 

rs1169288A>C 12:121416650 C (0.34;0.34) 1.05 [1.03-1.06] 3.44x10-7 0.20 1.05 [1.03-1.06] 4.53x10-8 0.68 5.94 

SCARB1 

rs11057830G>A 12:125307053 A (0.16;0.15) 1.07 [1.05-1.10] 5.65x10-9 0.56 1.06 [1.04-1.09] 1.34x10-8 0.78 6.49 

rs11057841C>T 12:125316743 T (0.15;0.16) 1.07 [1.04-1.09] 1.19x10-8 0.60 1.05 [1.03-1.08] 7.52x10-7 0.23 4.92 

OAZ2/RBPMS2 rs6494488A>G 15:65024204 G (0.18;0.21) 0.95 [0.93-0.97] 1.43x10-6 0.44 0.95 [0.93-0.97] 2.09x10-8 0.50 6.41 

DHX38 

rs1050362C>A 16:72130815 A (0.38;0.39) 1.04 [1.03-1.06] 2.32x10-7 0.59 1.04 [1.03-1.06] 3.52x10-8 0.60 6.16 

rs2072142C>T 16:72132713 T (0.37;0.38) 1.05 [1.03-1.06] 2.44x10-7 0.66 1.05 [1.03-1.06] 4.26x10-8 0.65 5.75 

GOSR2 rs17608766T>C 17:45013271 C (0.14;0.14) 1.07 [1.04-1.09] 4.14x10-8 0.99 1.06 [1.04-1.09] 2.10x10-7 0.74 5.30 

PECAM1 

rs1867624T>C 17:62387091 C (0.39;0.38) 0.96 [0.94-0.97] 1.14x10-7 0.70 0.96 [0.95-0.97] 3.98x10-8 0.36 6.03 

rs9892152C>T 17:62401965 T (0.47;0.46) 0.96 [0.95-0.98] 2.73x10-7 0.41 0.96 [0.95-0.98] 5.00x10-8 0.75 5.92 

(nsSNP) PROCR rs867186A>G 20:33764554 G (0.11;0.11) 0.93 [0.91-0.96] 1.26x10-8 0.61 0.93 [0.91-0.96] 2.70x10-9 0.74 7.11 

Chr:Position = chromosome:position (build 37). AF= allele frequency in Europeans; allele frequency averaged across All ancestries. OR [95% CI] = odds ratio [95% confidence interval]. P = 

CAD association P-value. Phet is the P-value for heterogeneity from the meta-analysis. log10BF is the log base 10 of the Bayes factors obtained from the MANTRA analyses (log10BF≥6 is 

considered significant) 

 



 

 

Supplementary Table 6 Summary of P-values for the null and associated sets used in the modified MAGENTA pathway analyses with the hypergeometric 

tests. 

 Null set Associated set 

  P-value distribution  P-value distribution 

Meta-analysis N Min Q1 Median Q3 Max N Min Q1 Median Q3 Max 

EUR 1,000 0.6530 0.7370 0.8195 0.9041 0.9998 53 5.82x10-14 1.585x10-6 1.958x10-5 4.296x10-5 9.890x10-5 

EUR+SAS+AA+EAS+CG 1,000 0.6871 0.7696 0.8388 0.9153 0.9999 85 8.40x10-97 4.86x10-11 9.72x10-9 8.04x10-8 1.00x10-6 

N: number of variants contained in the set. Min: minimum. Q1: first quartile. Q3: third quartile. Max = maximum. 

  



Supplementary Table 7 Pathways with enrichment of CAD associated variants from the all ancestry meta-analyses identified using modified MAGENTA. 

    Europeans All ancestry 

Category Database Pathway Genes k n Pobs Penr k n Pobs Penr 

Lipids / 

lipoproteins 

Reactome Lipoprotein metabolism 27 3 3 0.00034 0.0004 4 4 0.00004 0.0000 

KEGG Glycerolipid metabolism 49 4 4 0.00002 0.0000 3 3 0.00047 0.0002 

Reactome Metabolism of lipids and lipoproteins 228 6 11 0.00004 0.0001 7 15 0.00005 0.0003 

Reactome Chylomicron mediated lipid transport 17 1 1 0.07063 1.0000 3 3 0.00047 0.0003 

Ingenuity FXR/RXR activation 57 3 6 0.00581 0.0047 4 6 0.00047 0.0006 

Panther BP Lipid and fatty acid transport 111 3 11 0.03701 0.0378 5 11 0.00083 0.0016 

Ingenuity LXR/RXR activation 40 1 2 0.13634 1.0000 3 4 0.00176 0.0020 

Panther MF Apolipoprotein 23 1 2 0.13634 1.0000 2 2 0.00607 0.0050 

Panther MF Lipase 19 1 1 0.07063 1.0000 2 2 0.00607 0.0069 

KEGG Glycerophospholipid metabolism 77 3 5 0.00306 0.0029 1 5 0.33548 1.0000 

Reactome HDL mediated lipid transport 11 2 2 0.00493 0.0041 1 1 0.07834 1.0000 

Immune system / 

thrombosis 

Reactome Signaling by platelet derived growth factor 

(PDGF) 

64 4 10 0.00349 0.0026 4 7 0.00103 0.0009 

BioCarta Platelet amyloid precursor protein (APP) 14 3 5 0.00306 0.0034 3 4 0.00176 0.0019 



BioCarta Intrinsic prothrombin activation 23 2 2 0.00493 0.0049 2 3 0.01728 0.0167 

Reactome Formation of platelet plug 185 5 16 0.00364 0.0045 3 15 0.10636 0.1037 

Reactome Platelet activation 166 5 16 0.00364 0.0033 3 15 0.10636 0.1048 

Reactome G alpha Q signalling events 155 4 12 0.00737 0.0072 2 8 0.12471 0.1172 

Heart / cardiac 

function 

BioCarta Acute myocardial infarction (AMI) 20 3 4 0.00129 0.0004 3 4 0.00176 0.0011 

BioCarta Angiotensin-converting enzyme (ACE) 2 13 2 2 0.00493 0.0041 2 2 0.00607 0.0073 

Blood Panther Endothelin signaling pathway 19 3 4 0.00129 0.0013 3 4 0.00176 0.0019 

Reactome Hemostasis 272 7 21 0.00035 0.0006 5 21 0.01959 0.0206 

Vitamin C BioCarta Vitamin C in the brain 11 2 2 0.00493 0.0047 2 2 0.00607 0.0052 

Phosphatase Panther MF Phosphatase modulator 19 1 1 0.07063 1.0000 2 2 0.00607 0.0058 

DNA/RNA 

modification 

Reactome Elongation and processing of capped 

transcripts 

133 1 1 0.07063 1.0000 2 2 0.00607 0.0069 

Cell structure / 

interactions 

Panther MF Cation transporter 112 3 11 0.03701 0.0345 4 11 0.00757 0.0076 

Reactome mRNA splicing 107 1 1 0.07063 1.0000 2 2 0.00607 0.0077 

Reactome Integrin cell surface interactions 81 4 6 0.00031 0.0006 3 8 0.01948 0.0169 

Reactome Cell surface interactions at the vascular wall 93 4 8 0.00130 0.0006 3 8 0.01948 0.0227 

KEGG ECM receptor interaction 84 3 6 0.00581 0.0057 2 7 0.09840 0.0959 



SNARE 

protein 

Panther MF SNARE protein 36 2 2 0.00493 0.0041 2 3 0.01728 0.0168 

KEGG SNARE interactions in vesicular transport 37 2 2 0.00493 0.0040 2 3 0.01728 0.0173 

Liver Ingenuity Hepatic fibrosis / hepatic stellate cell 

activation 

83 4 11 0.00519 0.0068 3 10 0.03723 0.0397 

For each hypergeometric test the empirical P-values displayed were calculated based on comparing the observed P-value to those obtained from 10,000 random sets. Seventy 

six SNPs formed the associated set for the European ancestry analysis and 85 for the All ancestry analysis. Genes: the number of genes that are listed for that pathway in the 

database. n: number of analyses for which this pathway showed evidence of enrichment at P < 0.01. k:number of variants in the associated set that were mapped to a gene 

listed in the pathway. § P < 0.0001, occurs when no random set hypergeometric test P-values are less than or equal to the observed P-value. 

 

 

 

 

 



Supplementary Figures 



Supplementary Figure 1: QQ plots illustrating array-wide inflation for each of the studies with de 

novo genotyping. (a) CIHDS/CGPS studies analysed using a mixed effects model at 136,127 SNPs 

(b) CCHS study analysed at 135,910 SNPs (c) EPIC-CVD analysed using a mixed model at 134,533 

SNPs (d) EPIC-CVD-Umea analysed using a mixed model at 133,849 SNPs (e) South Asian studies 

PROMIS and BRAVE combined in a mixed model analysis of 127,114 SNPs (f)  MIGen analysed 

using a logistic regression model at 123,885 SNPs (note the two SNPs with P < 1x10-8, only passed 

QC in MIGen and consequently are likely to be genotype clustering artefacts and were excluded from 

all meta analyses) (g) WHI analysed at 145,132 SNPs (h) ARIC males analysed using a logistic 

regression model at 143,615 SNPs (i) ARIC females analysed using logistic regression at 143,473 

SNPs (j) TAICHI using linear a mixed model at 103,238 SNPs. Inflation factors are reported in 

Supplementary Table 3. 
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Supplementary Figure 2: Manhattan plot showing the association of ~79,000 variants with CAD 

from the European meta-analysis in up to ~221,000 individuals. Red dots represent SNPs that map to 

LD blocks that include the previously published (known) CAD regions. The SNP with the most 

evidence of association in this meta-analysis was rs133045 in the 9p21 region (P=1x10-93). -

log(P=5x10-8)~7.3 
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Supplementary Figure 3: Forest plots from the all studies meta-analysis for the 15 sentinel CAD-

associated SNPs. N = number of subjects, EA= effect allele, EAF= effect allele frequency, OR = odds 

ratio, CI = confidence interval. 
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Supplementary Figure 4: Regional association plots for novel CAD associated loci (a) from the all 

ancestry meta-analysis for 13 loci and the European meta-analysis for GOSR and SERPINH1.  (b) 

from the publicly available CARDIoGRAMplusC4D 1000G imputed GWAS results1. The r2 

information was calculated from the phased genotypes of 1000 Genome phase3 v5 (11/04/2014) 

super-populations (PROCR is given in Supplementary Figure 8). 
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Supplementary Figure 4(b) 
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Supplementary Figure 5: Manhattan plot for the association of the Metabochip SNPs in the studies 

with de novo genotyping  (a) European studies, CGPS/CIHDS, CCHS, EPIC-CVD, EPIC-Umea (b) 

the South Asian studies, BRAVE and PROMIS (c) the African American samples from MIGEN, 

WHI, and ARIC (d) the East Asian studies, TAICHI. -log(P=5x10-8)~7.3. Note these plots are across 

the whole CardioMetabochip and excluded the published CARDIoGRAMplusC4D data. 
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Supplementary Figure 6 SCARB1 regional association plots with (a) CAD (b) HDL2 (c) 

LDL2 and (d) triglycerides2. Physical position is given for GRCh37. The r2 information was 

from the 1000 Genome phase3 v5 EUR samples. 
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Supplementary Figure 7 Annotation of the SCARB1 gene locus using publicly available 

transcriptomic and epigenomic reference data sets. (a) Gene expression profile of SCARB1 in 

the GTEx data set (release V4; dbGaP accession phs000424.v4.p1). Among the profiled tissues, 

SCARB1 is most highly expressed in adrenal gland and liver tissues. (b) Annotation of 

epigenomic features at the SCARB1 locus (chr12:125,259,174–125,348,519; hg19) using the 

WashU Epigenome Browser v40.0.0 (http://epigenomegateway.wustl.edu/browser/). In the top 

panel, we show the two correlated variants rs11057830 and rs11057841 associated with CAD, 

as well as the variant rs838880 associated the HDL levels. RefSeq genes are shown at the 

bottom panel. A total of 23 epigenomic reference tracks (i.e. chromatin state maps) provided 

by the NIH Roadmap Epigenomics Project are displayed. Specifically, we show primary 

chromatin state maps in all available adult cell types/tissues (blood, bone, brain, fat and muscle 

tissues were excluded). All three highlighted genetic variants map to enhancers active in 

primary liver tissue. 
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Supplementary Figure 8 Association of the PROCR gene region. (a) with CAD (b) with PROCR expression QTLs in 

subcutaneous adipose tissue from MuTHER (c) PROCR expression QTLs in skin tissue from MuTHER (d) CAD-

association of the PROCR region conditional on the sentinel SNP, rs867186 (e) GGT7 expression QTLs in 

subcutaneous adipose tissue from MuTHER (f) GGT7 expression QTLs in skin tissue from MuTHER. Physical 

position is given for GRCh37. r2 is calculated using 1000G EUR samples and reported relative to the sentinel CAD 

SNP, rs867186, in (a), (b) & (c) and to the second CAD-associated SNP, rs6088590, in (d), (e) and (f).  
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