9 research outputs found

    GRANDMA and HXMT Observations of GRB 221009A -- the Standard-Luminosity Afterglow of a Hyper-Luminous Gamma-Ray Burst

    No full text
    International audienceGRB 221009A is the brightest Gamma-Ray Burst detected in more than 50 years of study. Here, we present observations in the X-ray and optical domains ranging from the prompt emission (optical coverage by all-sky cameras) up to 20 days after the GRB obtained by the GRANDMA Collaboration (which includes observations from more than 30 professional and amateur telescopes) and the \textit{Insight}-HXMT Collaboration operating the X-ray telescope HXMT-LE. We study the optical afterglow both with empirical fitting procedures and numerical modeling. We find that the GRB afterglow, extinguished by a large dust column, is most likely behind a combination of a large Milky-Way dust column combined with moderate low-metallicity dust in the host galaxy. We find that numerical models describing the synchrotron radiation at the forward shock of a relativistic top-hat jet propagating through a constant density medium require extreme parameters to fit the observational data. Based on these observations, we constrain the isotropic afterglow energy E0∌3.7×1054E_{0} \sim 3.7 \times 10^{54} erg, the density of the ambient medium nism≳1 cm−3n_{\mathrm{ism}} \gtrsim 1~\mathrm{cm}^{-3} and the opening angle of the jet core to be ≳10.7∘\gtrsim10.7^\circ. We do not find evidence (for or against) of jet structure, a potential jet break and the presence or absence of a SN. Placed in the global context of GRB optical afterglows, we find the afterglow of GRB 221009A is luminous but not extraordinarily so, highlighting that some aspects of this GRB do not deviate from the known sample despite its extreme energetics and the peculiar afterglow evolution

    GRANDMA and HXMT Observations of GRB 221009A -- the Standard-Luminosity Afterglow of a Hyper-Luminous Gamma-Ray Burst

    Get PDF
    International audienceGRB 221009A is the brightest Gamma-Ray Burst detected in more than 50 years of study. Here, we present observations in the X-ray and optical domains ranging from the prompt emission (optical coverage by all-sky cameras) up to 20 days after the GRB obtained by the GRANDMA Collaboration (which includes observations from more than 30 professional and amateur telescopes) and the \textit{Insight}-HXMT Collaboration operating the X-ray telescope HXMT-LE. We study the optical afterglow both with empirical fitting procedures and numerical modeling. We find that the GRB afterglow, extinguished by a large dust column, is most likely behind a combination of a large Milky-Way dust column combined with moderate low-metallicity dust in the host galaxy. We find that numerical models describing the synchrotron radiation at the forward shock of a relativistic top-hat jet propagating through a constant density medium require extreme parameters to fit the observational data. Based on these observations, we constrain the isotropic afterglow energy E0∌3.7×1054E_{0} \sim 3.7 \times 10^{54} erg, the density of the ambient medium nism≳1 cm−3n_{\mathrm{ism}} \gtrsim 1~\mathrm{cm}^{-3} and the opening angle of the jet core to be ≳10.7∘\gtrsim10.7^\circ. We do not find evidence (for or against) of jet structure, a potential jet break and the presence or absence of a SN. Placed in the global context of GRB optical afterglows, we find the afterglow of GRB 221009A is luminous but not extraordinarily so, highlighting that some aspects of this GRB do not deviate from the known sample despite its extreme energetics and the peculiar afterglow evolution

    GRANDMA and HXMT Observations of GRB 221009A -- the Standard-Luminosity Afterglow of a Hyper-Luminous Gamma-Ray Burst

    No full text
    International audienceGRB 221009A is the brightest Gamma-Ray Burst detected in more than 50 years of study. Here, we present observations in the X-ray and optical domains ranging from the prompt emission (optical coverage by all-sky cameras) up to 20 days after the GRB obtained by the GRANDMA Collaboration (which includes observations from more than 30 professional and amateur telescopes) and the \textit{Insight}-HXMT Collaboration operating the X-ray telescope HXMT-LE. We study the optical afterglow both with empirical fitting procedures and numerical modeling. We find that the GRB afterglow, extinguished by a large dust column, is most likely behind a combination of a large Milky-Way dust column combined with moderate low-metallicity dust in the host galaxy. We find that numerical models describing the synchrotron radiation at the forward shock of a relativistic top-hat jet propagating through a constant density medium require extreme parameters to fit the observational data. Based on these observations, we constrain the isotropic afterglow energy E0∌3.7×1054E_{0} \sim 3.7 \times 10^{54} erg, the density of the ambient medium nism≳1 cm−3n_{\mathrm{ism}} \gtrsim 1~\mathrm{cm}^{-3} and the opening angle of the jet core to be ≳10.7∘\gtrsim10.7^\circ. We do not find evidence (for or against) of jet structure, a potential jet break and the presence or absence of a SN. Placed in the global context of GRB optical afterglows, we find the afterglow of GRB 221009A is luminous but not extraordinarily so, highlighting that some aspects of this GRB do not deviate from the known sample despite its extreme energetics and the peculiar afterglow evolution

    ATLAS: technical proposal for a general-purpose p p experiment at the large hadron collider at CERN

    No full text

    Measurement of inclusive jet and dijet cross sections in proton-proton collisions at 7 TeV centre-of-mass energy with the ATLAS detector

    Get PDF
    Jet cross sections have been measured for the first time in proton-proton collisions at a centre-of-mass energy of 7 TeV using the ATLAS detector. The measurement uses an integrated luminosity of 17 nb−1 recorded at the Large Hadron Collider. The anti-k t algorithm is used to identify jets, with two jet resolution parameters, R=0.4 and 0.6. The dominant uncertainty comes from the jet energy scale, which is determined to within 7% for central jets above 60 GeV transverse momentum. Inclusive single-jet differential cross sections are presented as functions of jet transverse momentum and rapidity. Dijet cross sections are presented as functions of dijet mass and the angular variable χ. The results are compared to expectations based on next-to-leading-order QCD, which agree with the data, providing a validation of the theory in a new kinematic regime
    corecore