1,256 research outputs found

    Activated carbon production from brewer’s spent grain lignin

    Get PDF
    Activated carbons are adsorbents that are industrially used in multiple processes for product separation and purification, and for the treatment of liquid and gaseous effluents. Despite its frequent use in the water and waste industries, activated carbons remain an expensive material. In view of the high cost and the tedious procedures for the preparation and regeneration of activated carbons, there is a continuing search for low-cost potential adsorbents. The preparation of activated carbons from lignin is an attractive way of giving added value to this material, which is mainly used as in-house fuel for the recovery of both energy and residual inorganic matter. Over the past few decades, some works have been done on the activation of agricultural lignocellulosic waste materials to carbons, due to their low cost and high availability. Nevertheless, there is not any literature report about the activated carbon production from brewer’s spent grain (BSG) lignin. Use of BSG lignin as starting material for activated carbon production is interesting because BSG (the main brewery by-product) is produced in large amounts during all year, and is a lignin-rich material. Lignin can be converted in activated carbon by physical or chemical activation, the last one being more amply used than physical activation, because it requires lower activation temperatures and gives higher product yields. The purpose of the present work was to prepare activated carbon from BSG lignin, by chemical activation using phosphoric acid as impregnating agent, and to examine the influence of preparation conditions (acid/lignin ratio and carbonization temperature) on the textural characteristics of the materials produced (surface area, volume of pores, and pores size distribution) as well as on its adsorption capacities. Chemical activation of BSG lignin using phosphoric acid as impregnating agent was performed at various acid/lignin ratios (1, 2, or 3 g/g) and carbonization temperatures (300, 450, or 600 ºC), according to a 22 full factorial design. The resulting materials were characterized (regarding the surface area, volume of pores, and pores size distribution), and used for detoxification of the BSG hemicellulosic hydrolysate, which consists in a mixture of sugars, phenolic compounds, metallic ions, among other compounds. BSG carbons presented BET surface areas between 33 and 692 m2/g, and volume of pores between 0.058 and 0.453 cm3/g, which generally consisted in micro and mesopores. Adsorption capacity also varied to each carbon, according to the used activation condition. However, all of them showed high capacity for adsorption of metallic ions, mainly nickel, iron, chromium and silicon. In most of the cases, the BSG carbons efficiency for removal of these metals was higher than that obtained when using a commercial carbon sample. Phenolic compounds concentration and color were also reduced by using these sorbents, and the sugars content was practically not affected, which is benefic if the hydrolysate use in bioconversion processes is desired. The present work allowed to conclude that it is possible to produce activated carbons with good efficiency for phenolic compounds and metallic ions removal (mainly Ni, Fe, Cr, and Si), by chemical activation of the BSG lignin. The adsorption capacity of the carbons compared well and even favorably with that of a commercial activated carbon, suggesting that they have potential to be successfully used in detoxification processes in substitution of commercial sorbents. Regarding to the preparation of these activated carbons, an impregnation ratio and activation temperature of 3 g H3PO4/g lignin and 600 ºC, respectively, was the best combination of operating conditions leading to activated carbons with good capacity for adsorption of different toxic compounds. Acknowledgements: CAPES, FAPESP and CNPq (Brazil)

    Production, characterization and application of activated carbon from brewer’s spent grain lignin

    Get PDF
    Different types of activated carbon were prepared by chemical activation of brewer’s spent grain (BSG) lignin using H3PO4 at various acid/lignin ratios (1, 2, or 3 g/g) and carbonization temperatures (300, 450, or 600 °C), according to a 22 full-factorial design. The resulting materials were characterized with regard to their surface area, pore volume, and pore size distribution, and used for detoxification of BSG hemicellulosic hydrolysate (a mixture of sugars, phenolic compounds, metallic ions, among other compounds). BSG carbons presented BET surface areas between 33 and 692 m2/g, and micro- and mesopores with volumes between 0.058 and 0.453 cm3/g. The carbons showed high capacity for adsorption of metallic ions, mainly nickel, iron, chromium, and silicon. The concentration of phenolic compounds and color were also reduced by these sorbents. These results suggest that activated carbons with characteristics similar to those commercially found and high adsorption capacity can be produced from BSG lignin.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq Brazil)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    Modificação das fibras de celulose provenientes do bagaço de cana-de-açúcar com hidróxido de alumínio

    Get PDF
    Neste trabalho, foi desenvolvida uma metodologia para a preparação de compósitos de matrizes celulósicas com hidróxido de alumínio. Para avaliar a morfologia das fibras e a estabilidade térmica foram utilizadas as técnicas de microscopia eletrônica de varredura (MEV). Os resultados obtidos revelaram a deposição do hidróxido de alumínio alterou a morfologia das fibras, bem como a estabilidade térmica

    Dose-dependent effects of Allopurinol on human foreskin fibroblast cell and human umbilical vein endothelial cell under hypoxia

    Get PDF
    Allopurinol, an inhibitor of xanthine oxidase, has been used in clinical trials of patients with cardiovascular and chronic kidney disease. These are two pathologies with extensive links to hypoxia and activation of the transcription factor hypoxia inducible factor (HIF) family. Here we analysed the effects of allopurinol treatment in two different cellular models, and their response to hypoxia. We explored the dose-dependent effect of allopurinol on Human Foreskin Fibroblasts (HFF) and Human Umbilical Vein Endothelial Cells (HUVEC) under hypoxia and normoxia. Under normoxia and hypoxia, high dose allopurinol reduced the accumulation of HIF-1α protein in HFF and HUVEC cells. Allopurinol had only marginal effects on HIF-1α mRNA level in both cellular systems. Interestingly, allopurinol effects over the HIF system were independent of prolyl-hydroxylase activity. Finally, allopurinol treatment reduced angiogenesis traits in HUVEC cells in an in vitro model. Taken together these results indicate that high doses of allopurinol inhibits the HIF system and pro-angiogenic traits in cells

    Mass balance of pilot-scale pretreatment of sugarcane bagasse by steam explosion followed by alkaline delignification

    Get PDF
    Five pilot-scale steam explosion pretreatments of sugarcane bagasse followed by alkaline delignification were explored. The solubilised lignin was precipitated with 98% sulphuric acid. Most of the pentosan (82.6%), and the acetyl group fractions were solubilised during pretreatment, while 90.2% of cellulose and 87.0% lignin were recovered in the solid fraction. Approximately 91% of the lignin and 72.5% of the pentosans contained in the steam-exploded solids were solubilised by delignification, resulting in a pulp with almost 90% of cellulose. The acidification of the black liquors allowed recovery of 48.3% of the lignin contained in the raw material. Around 14% of lignin, 22% of cellulose and 26% of pentosans were lost during the process. In order to increase material recovery, major changes, such as introduction of efficient condensers and the reduction in the number of washing steps, should be done in the process setup. (C) 2012 Elsevier Ltd. All rights reserved.Alexander von Humboldt FoundationConselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazi

    Engineering aspects of hydrothermal pretreatment: from batch to continuous operation, scale-up and pilot reactor under biorefinery concept

    Get PDF
    Different pretreatments strategies have been developed over the years mainly to enhance enzymatic cellulose degradation. In the new biorefinery era, a more holistic view on pretreatment is required to secure optimal use of the whole biomass. Hydrothermal pretreatment technology is regarded as very promising for lignocellulose biomass fractionation biorefinery and to be implemented at the industrial scale for biorefineries of second generation and circular bioeconomy, since it does not require no chemical inputs other than liquid water or steam and heat. This review focuses on the fundamentals of hydrothermal pretreatment, structure changes of biomass during this pretreatment, multiproduct strategies in terms of biorefinery, reactor technology and engineering aspects from batch to continuous operation. The treatise includes a case study of hydrothermal biomass pretreatment at pilot plant scale and integrated process design.The authors gratefully thank the Secretary of Public Education ofMexico – Mexican Science and Technology Council (SEP-CONACYT,Mexico) for the Basic Science Project -2015-01 (Ref. 254808), EnergySustainability Fund 2014-05 (CONACYT-SENER), Mexican Centre forInnovation in Bioenergy (Cemie-Bio), Cluster of Bioalcohols (Ref.249564) and the BMBF for the financial support (reference number:031B0660A).info:eu-repo/semantics/publishedVersio

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 4.7 fb−1 of s√=7TeV proton-proton collisions

    Get PDF
    Results are presented of a search for new particles decaying to large numbers of jets in association with missing transverse momentum, using 4.7 fb−1 of pp collision data at s√=7TeV collected by the ATLAS experiment at the Large Hadron Collider in 2011. The event selection requires missing transverse momentum, no isolated electrons or muons, and from ≥6 to ≥9 jets. No evidence is found for physics beyond the Standard Model. The results are interpreted in the context of a MSUGRA/CMSSM supersymmetric model, where, for large universal scalar mass m 0, gluino masses smaller than 840 GeV are excluded at the 95% confidence level, extending previously published limits. Within a simplified model containing only a gluino octet and a neutralino, gluino masses smaller than 870 GeV are similarly excluded for neutralino masses below 100 GeV

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ γ, H → Z Z∗ →4l and H →W W∗ →lνlν. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson
    corecore