199 research outputs found

    Trade, Protectionism, and the U.S. Economy: Examining the Evidence

    Get PDF
    The expansion of international trade has provided considerable benefits to the United States and its trading partners. Yet the growth of trade also raises concerns about its impact on domestic firms and their workers. This study surveys the economic research on the causes of expanded international trade, the benefits of trade, the impact of trade on employment and wages, and the cost of international trade restrictions. The findings include the following: Income growth accounts for two-thirds of the growth in global trade in recent decades, trade liberalization accounts for one-quarter, and lower transportation costs make up the remainder. Trade expansion has fueled faster growth and raised incomes in countries that have liberalized. A 1-percentage point gain in trade as a share of the economy raises per capita income by 1 percent. Global elimination of all barriers to trade in goods and services would raise global income by 2trillionandU.S.incomebyalmost2 trillion and U.S. income by almost 500 billion. Competition from trade delivers lower prices and more product variety to consumers. Americans are $300 billion better off today because of the greater product variety from imports. International trade directly affects only 15 percent of the U.S. workforce. Most job displacement occurs in sectors that are not engaged in global competition. Net payroll employment in the United States has grown by 36 million in the past two decades, alongside a dramatic increase in imports of goods and services. Expanding trade does not explain most of the growing gap between wages earned by skilled and unskilled workers. The relative decline in unskilled wages is mainly caused by technological changes that reward greater skills. Trade barriers impose large, net costs on the U.S. economy. The cost to the economy per job saved in protected industries far exceeds the wages paid to workers in those job

    Wings along the BRI: exporting Chinese UCAVs and security?

    Get PDF
    China’s pursuit of military innovation has met a more active diplomacy along the Belt and Road Initiative (BRI). Filling the void left by traditional suppliers, Chinese Unmanned Combat Aerial Vehicles (UCAVs) have proliferated along the BRI and are starting to affect Middle Eastern and African security landscapes. This Strategic Update explains the drivers and implications of these developments in the context of China’s modernising defence industrial base and more active role in security cooperation in the Global South

    On the isolation of TI-plasmid from Agrobacterium tumefaciens

    Get PDF
    An efficient lysis method for Agrobacterium cells was developed, which allows a reproducible isolation of the tumor inducing (TI)-plasmid. The lysis method is based on the sensitivity of this bacterium to incubation with lysozyme, n-dodecylamine,EDTA, followed by Sarkosyl, after growth in the presence of carbenicillin. We also present a procedure for the isolation of the TI-plasmid on a large scale, that might be used for the mass isolation of other large plasmids which like the TI-plasmid, can not be cleared with earlier described procedures. The purity of the plasmid preparations was determined with DNA renaturation kinetics, which method has the advantage that the plasmid need not to be in the supercoiled or open circular form

    The Hsp90 chaperone controls the biogenesis of L7Ae RNPs through conserved machinery

    Get PDF
    RNA-binding proteins of the L7Ae family are at the heart of many essential ribonucleoproteins (RNPs), including box C/D and H/ACA small nucleolar RNPs, U4 small nuclear RNP, telomerase, and messenger RNPs coding for selenoproteins. In this study, we show that Nufip and its yeast homologue Rsa1 are key components of the machinery that assembles these RNPs. We observed that Rsa1 and Nufip bind several L7Ae proteins and tether them to other core proteins in the immature particles. Surprisingly, Rsa1 and Nufip also link assembling RNPs with the AAA + adenosine triphosphatases hRvb1 and hRvb2 and with the Hsp90 chaperone through two conserved adaptors, Tah1/hSpagh and Pih1. Inhibition of Hsp90 in human cells prevents the accumulation of U3, U4, and telomerase RNAs and decreases the levels of newly synthesized hNop58, hNHP2, 15.5K, and SBP2. Thus, Hsp90 may control the folding of these proteins during the formation of new RNPs. This suggests that Hsp90 functions as a master regulator of cell proliferation by allowing simultaneous control of cell signaling and cell growth

    Selenoprotein gene nomenclature

    Get PDF
    The human genome contains 25 genes coding for selenocysteine-containing proteins (selenoproteins). These proteins are involved in a variety of functions, most notably redox homeostasis. Selenoprotein enzymes with known functions are designated according to these functions: TXNRD1, TXNRD2, and TXNRD3 (thioredoxin reductases), GPX1, GPX2, GPX3, GPX4 and GPX6 (glutathione peroxidases), DIO1, DIO2, and DIO3 (iodothyronine deiodinases), MSRB1 (methionine-R-sulfoxide reductase 1) and SEPHS2 (selenophosphate synthetase 2). Selenoproteins without known functions have traditionally been denoted by SEL or SEP symbols. However, these symbols are sometimes ambiguous and conflict with the approved nomenclature for several other genes. Therefore, there is a need to implement a rational and coherent nomenclature system for selenoprotein-encoding genes. Our solution is to use the root symbol SELENO followed by a letter. This nomenclature applies to SELENOF (selenoprotein F, the 15 kDa selenoprotein, SEP15), SELENOH (selenoprotein H, SELH, C11orf31), SELENOI (selenoprotein I, SELI, EPT1), SELENOK (selenoprotein K, SELK), SELENOM (selenoprotein M, SELM), SELENON (selenoprotein N, SEPN1, SELN), SELENOO (selenoprotein O, SELO), SELENOP (selenoprotein P, SeP, SEPP1, SELP), SELENOS (selenoprotein S, SELS, SEPS1, VIMP), SELENOT (selenoprotein T, SELT), SELENOV (selenoprotein V, SELV) and SELENOW (selenoprotein W, SELW, SEPW1). This system, approved by the HUGO Gene Nomenclature Committee, also resolves conflicting, missing and ambiguous designations for selenoprotein genes and is applicable to selenoproteins across vertebrates

    Can a “state of the art” chemistry transport model simulate Amazonian tropospheric chemistry?

    Get PDF
    We present an evaluation of a nested high-resolution Goddard Earth Observing System (GEOS)-Chem chemistry transport model simulation of tropospheric chemistry over tropical South America. The model has been constrained with two isoprene emission inventories: (1) the canopy-scale Model of Emissions of Gases and Aerosols from Nature (MEGAN) and (2) a leaf-scale algorithm coupled to the Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) dynamic vegetation model, and the model has been run using two different chemical mechanisms that contain alternative treatments of isoprene photo-oxidation. Large differences of up to 100 Tg C yr^(−1) exist between the isoprene emissions predicted by each inventory, with MEGAN emissions generally higher. Based on our simulations we estimate that tropical South America (30–85°W, 14°N–25°S) contributes about 15–35% of total global isoprene emissions. We have quantified the model sensitivity to changes in isoprene emissions, chemistry, boundary layer mixing, and soil NO_x emissions using ground-based and airborne observations. We find GEOS-Chem has difficulty reproducing several observed chemical species; typically hydroxyl concentrations are underestimated, whilst mixing ratios of isoprene and its oxidation products are overestimated. The magnitude of model formaldehyde (HCHO) columns are most sensitive to the choice of chemical mechanism and isoprene emission inventory. We find GEOS-Chem exhibits a significant positive bias (10–100%) when compared with HCHO columns from the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) and Ozone Monitoring Instrument (OMI) for the study year 2006. Simulations that use the more detailed chemical mechanism and/or lowest isoprene emissions provide the best agreement to the satellite data, since they result in lower-HCHO columns

    Non-Coding RNAs in Retinal Development

    Get PDF
    Retinal development is dependent on an accurately functioning network of transcriptional and translational regulators. Among the diverse classes of molecules involved, non-coding RNAs (ncRNAs) play a significant role. Members of this family are present in the cell as transcripts, but are not translated into proteins. MicroRNAs (miRNAs) are small ncRNAs that act as post-transcriptional regulators. During the last decade, they have been implicated in a variety of biological processes, including the development of the nervous system. On the other hand, long-ncRNAs (lncRNAs) represent a different class of ncRNAs that act mainly through processes involving chromatin remodeling and epigenetic mechanisms. The visual system is a prominent model to investigate the molecular mechanisms underlying neurogenesis or circuit formation and function, including the differentiation of retinal progenitor cells to generate the seven principal cell classes in the retina, pathfinding decisions of retinal ganglion cell axons in order to establish the correct connectivity from the eye to the brain proper, and activity-dependent mechanisms for the functionality of visual circuits. Recent findings have associated ncRNAs in several of these processes and uncovered a new level of complexity for the existing regulatory mechanisms. This review summarizes and highlights the impact of ncRNAs during the development of the vertebrate visual system, with a specific focus on the role of miRNAs and a synopsis regarding recent findings on lncRNAs in the retina

    Priorities for mitigating greenhouse gas and ammonia emissions to meet UK policy targets

    Get PDF
    Agriculture is essential for providing food and maintaining food security while concurrently delivering multiple other ecosystem services. However, agricultural systems are generally a net source of greenhouse gases and ammonia. They, therefore, need to substantively contribute to climate change mitigation and net zero ambitions. It is widely acknowledged that there is a need to further reduce and mitigate emissions across sectors, including agriculture to address the climate emergency and emissions gap. This discussion paper outlines a collation of opinions from a range of experts within agricultural research and advisory roles following a greenhouse gas and ammonia emission mitigation workshop held in the UK in March 2022. The meeting identified the top mitigation priorities within the UK’s agricultural sector to achieve reductions in greenhouse gases and ammonia that are compatible with policy targets. In addition, experts provided an overview of what they believe are the key knowledge gaps, future opportunities and co-benefits to mitigation practices as well as indicating the potential barriers to uptake for mitigation scenarios discussed

    Laparoscopic resection of a residual retroperitoneal tumor mass of nonseminomatous testicular germ cell tumors

    Get PDF
    Resection of a residual retroperitoneal tumor mass (RRRTM) is standard procedure after combination chemotherapy for metastatic nonseminomatous testicular germ cell tumors (NSTGCT). At the University Medical Center Groningen, 79 consecutive patients with disseminated NSTGCT were treated with cisplatin combination chemotherapy between 2005 and 2007. Laparoscopic RRRTM was performed for patients with RRTM located less than 5 cm ventrally or laterally from the aorta or the vena cava. The 29 patients who fulfilled the criteria had a median age of 25 years (range, 16-59 years). The stages of disease before chemotherapy treatment according to the Royal Marsden classification were 2A (n = 6, 21%), 2B (n = 14, 48%), 2C (n = 3, 10%), and 4 with a lymph node status of N2 (n = 6, 21%). The median duration of laparoscopy was 198 min (range, 122-325 min). The median diameter of the RRTM was 21 mm (range, 11-47 mm). Laparoscopic resection was successful for 25 patients (86%). Conversion was necessary for three patients (10%): two due to bleeding and one because of obesity. One nonplanned hand-assisted procedure (3%) also had to be performed. Histologic examination of the specimens showed fibrosis or necrosis in 12 patients (41%), mature teratoma in 16 patients (55%), and viable tumor in 1 patient (3%). The median hospital stay was 1 day (range, 1-6 days). During a median follow-up period of 47 months (29-70 months), one patient experienced an early relapse (1 month after the end of treatment) (4%). For properly selected patients, laparoscopic resection of RRTM is an improvement in the combined treatment of disseminated NSTGCT and associated with a short hospital stay, minimal morbidity, rapid recovery, and a neat cosmetic result. Long-term data to prove oncologic efficacy are awaited
    corecore