49 research outputs found

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Funksjonell konnektivitet i cerebrale hvilenettverk og eksekutiv funksjon hos jenter med anorexia nervosa. En pilotstudie

    No full text
    Tidligere forskning har antydet at pasienter med anorexia nervosa (AN) har Ăžkt funksjonell konnektivitet i cerebrale hvilenettverk, og svekket eksekutiv funksjon, sammenlignet med friske. PĂ„ bakgrunn av tidligere forskning, forventet vi at pasientgruppen i denne studien ville vise hĂžyere grad av funksjonell intrakonnektivitet i cerebrale hvilenettverk, og svekket eksekutiv funksjon, sammenlignet med en aldersmatchet kontrollgruppe. Det var forventet at eventuell eksekutiv funksjonssvekkelse ville samvariere med grad av funksjonell konnektivitet. Vi undersĂžkte disse hypotesene ved Ă„ benytte en hjerneavbildningsteknikk (Resting State functional Magnetic Resonance Imaging; RS-fMRI), en test av kognitivt evnenivĂ„ (Wechsler Abbreviated Scale of Intelligence; WASI), og eksekutive tester (Trail Making Test; TMT, Color-Word Interference Test; CWIT). Selvrapporteringsskjemaer ble brukt for Ă„ kontrollere for komorbide tilstander (BDI-II og Y- BOCS). Det ble anvendt et mellomgruppedesign, og utvalget besto totalt sett av 16 deltakere i alderen 15-18 Ă„r. Pasientgruppen besto av 8 jenter, diagnostisert med restriktiv AN, innlagt ved Regionalt senter for spiseforstyrrelser (RSS) ved Universitetssykehuset i Nord-Norge (UNN TromsĂž). Kontrollgruppen besto av 8 friske jenter. Ved Ă„ anvende Group Independent Component Analysis (GICA) identifiserte vi totalt 8 cerebrale hvilenettverk. Tre av disse nettverkene (hĂžyre eksekutive nettverk, ventralt/posterior default mode nettverk, anterior default mode nettverk) viste signifikant hĂžyere funksjonell konnektivitet i pasientgruppen, sammenlignet med kontrollgruppen (ρ < .05). Vi fant derimot ingen forskjell mellom gruppene i prestasjon pĂ„ eksekutive tester. FĂžlgelig observerte vi ikke forventet samvariasjon mellom Ăžkt funksjonell konnektivitet i cerebrale hvilenettverk og svekket eksekutiv funksjon. Imidlertid bĂžr man utĂžve forsiktighet ved Ă„ trekke slutninger om generaliserbarhet, da dette var en pilotstudie med et begrenset utvalg. VĂ„re funn kan potensielt bidra til Ăžkt kunnskap om de nevropsykologiske aspektene ved lidelsen AN. NĂžkkelord: Anorexia nervosa, funksjonell konnektivitet, cerebrale hvilenettverk, RS- fMRI, eksekutiv funksjon, CWIT, TM

    A mega-cryptic species complex hidden among one of the most common annelids in the North East Atlantic

    Get PDF
    <div><p>We investigate mitochondrial (<i>COI</i>, <i>16S rDNA</i>) and nuclear (<i>ITS2</i>, <i>28S rDNA</i>) genetic structure of North East Atlantic lineages of <i>Terebellides</i>, a genus of sedentary annelids mainly inhabiting continental shelf and slope sediments. We demonstrate the presence of more than 25 species of which only seven are formally described. Species boundaries are determined with molecular data using a broad range of analytical methods. Many of the new species are common and wide spread, and the majority of the species are found in sympatry with several other species in the complex. Being one of the most regularly encountered annelid taxa in the North East Atlantic, it is more likely to find an undescribed species of <i>Terebellides</i> than a described one.</p></div

    A mega-cryptic species complex hidden among one of the most common annelids in the North East Atlantic - Fig 1

    Get PDF
    <p>Live specimens of A) <i>Terebellides williamsae</i> (specimen 2181_2), in lateral view, with oocytes in the coelomic cavity and B) species 7 (specimen 2448_7), in lateral view. <i>Abbreviations</i>: ab (abdomen), bl (branchial lamellae), br (branchiae), bs (branchial stalk), bt (buccal tentacles), gc (geniculate chaetae), ll (lateral lappets), tr (thorax).</p

    Results from the phylogenetic analyses, summarized on the ML estimate of the combined data set with xinsi-aligned ITS2-sequences including 91 terminals.

    No full text
    <p>Specimens are named according to the extraction-number and the appended clade-number. The phylogenetic tree is arbitrarily divided into four colour-coded groups, A–D. These colours are used as background colour in the distribution and haplotype network figures (Figs <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0198356#pone.0198356.g006" target="_blank">6</a>–<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0198356#pone.0198356.g008" target="_blank">8</a>). Specimens with at least three of the genetic markers were included in the phylogenetic analyses, outgroups are not shown. Pie diagrams indicate support values for the node, left pie shows results from ML analyses, and right pie diagram results from Bayesian analyses. Upper two slices of a pie illustrate results from the combined data sets' two different alignments, with xinsi-aligned ITS2-sequences to the left, and salsa-aligned ITS2-sequences to the right. The three remaining slices illustrate results from the combined mitochondrial data (lower left slice), and the combined nuclear data sets' two different alignments, where lower median slice has xinsi-aligned ITS2-sequences, and lower right slice has salsa-aligned ITS2-sequences. Yellow, blue and red colour indicate low, moderate and strong support, which equals ML support in the intervals 50–74, 75–89, and 90–100, or BI posterior probabilities in the intervals 0.50–0.84, 0.85–0.94 and 0.95–1.0 respectively. White means support <50/0.50 for the node. Columns show clustering of terminals according to different methodologies performed on more inclusive data sets where all specimens with COI or ITS2 data, or specimens with both COI and ITS2 data, were included. The first columns under the headings COI, ITSx and ITSs represent the results from TCS, and the second columns represent the results from GMYC. The columns under the heading STACEY show the two different outcomes from this analysis. White means that the network or species recovered is identical to the initial haplotype network found in COI including all COI-sequences, light grey means that less inclusive networks or putative species were recovered, and dark grey means that a more inclusive network or putative species was recovered. Double-headed arrows to the right of the columns show our final judgement of species delimitation. The two small letters to the right indicate our designation of described species, st = <i>T</i>. <i>stroemii</i>, bi = <i>T</i>. <i>bigeniculatus</i>, at = <i>T</i>. <i>atlantis</i>, sh = <i>T</i>. <i>shetlandica</i>, ir = <i>T</i>. <i>irinae</i>, wi = <i>T</i>. <i>williamsae</i>, and gr = <i>T</i>. <i>gracilis</i>.</p

    A mega-cryptic species complex hidden among one of the most common annelids in the North East Atlantic - Fig 7

    No full text
    <p>Distribution maps, depth distribution in meters, and haplotype networks for group A, species 6, 7, 8, and 9, and for group B, species 1, 17, 14, 4, 26, and 27. All species except for species 6 that we refer to as <i>T</i>. <i>stroemii</i> (st), and clade 1 that we refer to as <i>T</i>. <i>shetlandica</i> (sh) are undescribed. Sites are colour coded as in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0198356#pone.0198356.g003" target="_blank">Fig 3</a>. Type localities for <i>T</i>. <i>stroemii</i>, and <i>T</i>. <i>shetlandica</i> indicated with yellow arrows.</p

    Collecting sites, biogeographic regions, and type localities for <i>Terebellides irinae</i> (ir), <i>T</i>. <i>atlantis</i> (at), <i>T</i>. <i>bigeniculatus</i> (bi), <i>T</i>. <i>shetlandica</i> (sh), <i>T</i>. <i>williamsae</i> (wi), <i>T</i>. <i>stroemii</i> (st), and <i>T</i>. <i>gracilis</i> (gr) indicated with an arrow.

    No full text
    <p>Type localities for <i>T</i>. <i>irinae</i> and <i>T</i>. <i>atlantis</i> are located outside the map's area. Biogeographic regions given by colours of samples (collecting sites) (see text for definitions): <i>Kattegat</i> (magenta); <i>Skagerrak</i> (dark green); <i>North Sea</i> (light green); <i>Irish Sea</i>, <i>Celtic Sea</i> (orange); <i>Norwegian coast and shelf</i> (red); <i>Norwegian Sea</i> (brown); <i>Barents Sea</i> (dark blue); <i>Arctic Ocean</i> (rose red); <i>Greenland Sea</i> (yellow); <i>South of Iceland</i> (light blue).</p
    corecore