67 research outputs found

    Split-belt walking:An experience that is hard to forget

    Get PDF
    BACKGROUND. The common paradigm to study the adaptability of human gait is split-belt walking. Short-term savings (minutes to days) of split-belt adaptation have been widely studied to gain knowledge in locomotor learning but reports on long-term savings are limited. Here, we studied whether after a prolonged inter-exposure interval (three weeks), the newly acquired locomotor pattern is subject to forgetting or that the pattern is saved in long-term locomotor memory. RESEARCH QUESTION. Can savings of adaptation to split-belt walking remain after a prolonged interexposure interval of three weeks? METHODS. Fourteen healthy adults participated in a single tenminute adaptation session to split-belt walking and five-minute washout to tied-belt walking. They received no training after the first exposure and returned to the laboratory exactly three weeks later for the second exposure. To identify the adaptation trends and quantify saving parameters we used Singular Spectrum Analysis, a non-parametric, data-driven approach. We identified trends in step length asymmetry and double support asymmetry, and calculated the adaptation volume (reduction in asymmetry over the course of adaptation), and the plateau time (time required for the trend to level off). RESULTS. At the second exposure after three weeks, we found substantial savings in adaptation for step length asymmetry volume (61.6% – 67.6% decrease) and plateau time (76.3% decrease). No differences were found during washout or in double support asymmetry. SIGNIFICANCE. This study shows that able-bodied individuals retain savings of split-belt adaptation over a three-week period, which indicates that only naïve split-belt walkers should be included in split-belt adaptation studies, as previous experience to split-belt walking will not be washed out, even after a prolonged period. In future research, these results can be compared with long-term savings in patient groups, to gain insight into factors underlying (un)successful gait training in rehabilitation

    On the pion-nucleon coupling constant

    Full text link
    In view of persisting misunderstanding about the determination of the pion-nucleon coupling constants in the Nijmegen multienergy partial-wave analyses of pp, np, and pbar-p scattering data, we present additional information which may clarify several points of discussion. We comment on several recent papers addressing the issue of the pion-nucleon coupling constant and criticizing the Nijmegen analyses.Comment: 19 pages, Nijmegen preprint THEF-NYM-92-0

    Additional evidence on serological correlates of protection against measles: An observational cohort study among once vaccinated children exposed to measles

    Get PDF
    To assess correlates of protection against measles and against subclinical measles virus (MV) infection, we recruited once-vaccinated children from geographic regions associated with increased MV circulation and/or at schools with low vaccination coverage in the Netherlands. Paired blood samples were collected shortly after onset of the measles outbreak and after the outbreak. A questionnaire was used to document the likelihood of exposure to MV and occurrence of measles-like symptoms. All blood samples were tested for MV-specific antibodies with five different assays. Correlates of protection were assessed by considering the lowest neutralizing antibody levels in children without MV infection, and by ROC analyses. Among 91 participants, two seronegative children (2%) developed measles, and an additional 19 (23%) experienced subclinical MV infection. The correlate of protection against measles was lower than 0.345 IU/mL. We observed a decreasing attack rate of subclinical MV infection with increasing levels of specific antibodies until 2.1 IU/mL, above which no subclinical MV infections were detected. The ROC analyses found a correlate of protection of 1.71 IU/mL (95% CI 1.01–2.11) for subclinical MV infection. Our correlates of protection were consistent with previous estimates. This information supports the analyses of serosurveys to detect immunity gaps that require targeted intervention strategies

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Baseline Predictors of Sputum Culture Conversion in Pulmonary Tuberculosis: Importance of Cavities, Smoking, Time to Detection and W-Beijing Genotype

    Get PDF
    Background: Time to detection (TTD) on automated liquid mycobacterial cultures is an emerging biomarker of tuberculosis outcomes. The M. tuberculosis W-Beijing genotype is spreading globally, indicating a selective advantage. There is a paucity of data on the association between baseline TTD and W-Beijing genotype and tuberculosis outcomes. Aim: To assess baseline predictors of failure of sputum culture conversion, within the first 2 months of antitubercular therapy, in participants with pulmonary tuberculosis. Design: Between May 2005 and August 2008 we conducted a prospective cohort study of time to sputum culture conversion in ambulatory participants with first episodes of smear and culture positive pulmonary tuberculosis attending two primary care clinics in Cape Town, South Africa. Rifampicin resistance (diagnosed on phenotypic susceptibility testing) was an exclusion criterion. Sputum was collected weekly for 8 weeks for mycobacterial culture on liquid media (BACTEC MGIT 960). Due to missing data, multiple imputation was performed. Time to sputum culture conversion was analysed using a Cox-proportional hazards model. Bayesian model averaging determined the posterior effect probability for each variable. Results: 113 participants were enrolled (30.1% female, 10.5% HIV-infected, 44.2% W-Beijing genotype, and 89% cavities). On Kaplan Meier analysis 50.4% of participants underwent sputum culture conversion by 8 weeks. The following baseline factors were associated with slower sputum culture conversion: TTD (adjusted hazard ratio (aHR) = 1.11, 95% CI 1.02; 1.2), lung cavities (aHR = 0.13, 95% CI 0.02; 0.95), ever smoking (aHR = 0.32, 95% CI 0.1; 1.02) and the W-Beijing genotype (aHR = 0.51, 95% CI 0.25; 1.07). On Bayesian model averaging, posterior probability effects were strong for TTD, lung cavitation and smoking and moderate for W-Beijing genotype. Conclusion: We found that baseline TTD, smoking, cavities and W-Beijing genotype were associated with delayed 2 month sputum culture. Larger studies are needed to confirm the relationship between the W-Beijing genotype and sputum culture conversion.Publisher's versio

    Quantifying the effectiveness of climate change mitigation through forest plantations and carbon sequestration with an integrated land-use model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Carbon plantations are introduced in climate change policy as an option to slow the build-up of atmospheric carbon dioxide (CO<sub>2</sub>) concentrations. Here we present a methodology to evaluate the potential effectiveness of carbon plantations. The methodology explicitly considers future long-term land-use change around the world and all relevant carbon (C) fluxes, including all natural fluxes. Both issues have generally been ignored in earlier studies.</p> <p>Results</p> <p>Two different baseline scenarios up to 2100 indicate that uncertainties in future land-use change lead to a near 100% difference in estimates of carbon sequestration potentials. Moreover, social, economic and institutional barriers preventing carbon plantations in natural vegetation areas decrease the physical potential by 75–80% or more.</p> <p>Nevertheless, carbon plantations can still considerably contribute to slowing the increase in the atmospheric CO<sub>2 </sub>concentration but only in the long term. The most conservative set of assumptions lowers the increase of the atmospheric CO<sub>2 </sub>concentration in 2100 by a 27 ppm and compensates for 5–7% of the total energy-related CO<sub>2 </sub>emissions. The net sequestration up to 2020 is limited, given the short-term increased need for agricultural land in most regions and the long period needed to compensate for emissions through the establishment of the plantations. The potential is highest in the tropics, despite projections that most of the agricultural expansion will be in these regions. Plantations in high latitudes as Northern Europe and Northern Russia should only be established if the objective to sequester carbon is combined with other activities.</p> <p>Conclusion</p> <p>Carbon sequestration in plantations can play an important role in mitigating the build-up of atmospheric CO<sub>2</sub>. The actual magnitude depends on natural and management factors, social barriers, and the time frame considered. In addition, there are a number of ancillary benefits for local communities and the environment. Carbon plantations are, however, particularly effective in the long term. Furthermore, plantations do not offer the ultimate solution towards stabilizing CO<sub>2 </sub>concentrations but should be part of a broader package of options with clear energy emission reduction measures.</p

    A media framing analysis of urban flooding in Nigeria: current narratives and implications for policy

    Get PDF
    © 2017, The Author(s). A critical element of current flood management is the importance of engaging key policy actors when policy decisions are to be made. However, there is still only limited understanding of how narratives of flood management actors may influence flood management policies, even though there is a suggestion that actors can strategically use their narratives to influence policy directions. In a developing country like Nigeria, there are still questions around lessons that can be learnt from understanding the narratives of policy actors, to unravel the complex nature of strategies and policy directions in managing urban floods. To help fill these gaps, this paper uses quantitative content analysis to explore the frame of five policy actor groups (government, local communities, business, multilateral organisations and non-governmental organisations (NGOs)) as expressed in local and national newspapers between 2012 and 2016 to understand their narratives of causes and strategies to solve the problem of urban flooding in Nigeria. The narratives of government, local communities and businesses align with the premise that flooding can and should be prevented whilst that of multilateral and business actors champion adaptation strategies on the basis that flooding is inevitable and hence more energy should be directed at ‘living with water’—emergency response, damage reduction and the aftermath. The study also identified areas of potential consensus and conflict between direct actors such as government and local communities on the one hand and funders on the other. Better discussion among actors aiding understanding of contemporary thinking and local realities will aid policy-making and policy implementation in the Nigerian context. An important step will be in the collaborative design of an urgently needed ‘Nigerian policy on flooding’ which currently does not exist

    Long-term exposure to ambient air pollution and traffic noise and incident hypertension in seven cohorts of the European study of cohorts for air pollution effects (ESCAPE)

    Get PDF
    We investigated whether traffic-related air pollution and noise are associated with incident hypertension in European cohorts.; We included seven cohorts of the European study of cohorts for air pollution effects (ESCAPE). We modelled concentrations of particulate matter with aerodynamic diameter ≤2.5 µm (PM2.5), ≤10 µm (PM10), &gt;2.5, and ≤10 µm (PMcoarse), soot (PM2.5 absorbance), and nitrogen oxides at the addresses of participants with land use regression. Residential exposure to traffic noise was modelled at the facade according to the EU Directive 2002/49/EC. We assessed hypertension as (i) self-reported and (ii) measured (systolic BP ≥ 140 mmHg or diastolic BP ≥ 90 mmHg or intake of BP lowering medication (BPLM). We used Poisson regression with robust variance estimation to analyse associations of traffic-related exposures with incidence of hypertension, controlling for relevant confounders, and combined the results from individual studies with random-effects meta-analysis. Among 41 072 participants free of self-reported hypertension at baseline, 6207 (15.1%) incident cases occurred within 5-9 years of follow-up. Incidence of self-reported hypertension was positively associated with PM2.5 (relative risk (RR) 1.22 [95%-confidence interval (CI):1.08; 1.37] per 5 µg/m³) and PM2.5 absorbance (RR 1.13 [95% CI:1.02; 1.24] per 10 - 5m - 1). These estimates decreased slightly upon adjustment for road traffic noise. Road traffic noise was weakly positively associated with the incidence of self-reported hypertension. Among 10 896 participants at risk, 3549 new cases of measured hypertension occurred. We found no clear associations with measured hypertension.; Long-term residential exposures to air pollution and noise are associated with increased incidence of self-reported hypertension

    State of the climate in 2018

    Get PDF
    In 2018, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—continued their increase. The annual global average carbon dioxide concentration at Earth’s surface was 407.4 ± 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W m−2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La Niña in early 2018 transitioning to a weak El Niño by the year’s end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981–2010 average, tying for third highest in the 118-year record, following 2016 and 2017. June’s Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°–0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000–18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El Niño year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° ± 0.01°C decade−1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981–2010 average of 82. Eleven tropical cyclones reached Saffir–Simpson scale Category 5 intensity. North Atlantic Major Hurricane Michael’s landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 25billion(U.S.dollars)indamages.InthewesternNorthPacific,SuperTyphoonMangkhutledto160fatalitiesand25 billion (U.S. dollars) in damages. In the western North Pacific, Super Typhoon Mangkhut led to 160 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and Réunion Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at Waipā Gardens (Kauai) on 14–15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000–10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)
    corecore