502 research outputs found
Simulations of CMOS pixel sensors with a small collection electrode, improved for a faster charge collection and increased radiation tolerance
CMOS pixel sensors with a small collection electrode combine the advantages
of a small sensor capacitance with the advantages of a fully monolithic design.
The small sensor capacitance results in a large ratio of signal-to-noise and a
low analogue power consumption, while the monolithic design reduces the
material budget, cost and production effort. However, the low electric field in
the pixel corners of such sensors results in an increased charge collection
time, that makes a fully efficient operation after irradiation and a timing
resolution in the order of nanoseconds challenging for pixel sizes larger than
approximately forty micrometers. This paper presents the development of
concepts of CMOS sensors with a small collection electrode to overcome these
limitations, using three-dimensional Technology Computer Aided Design
simulations. The studied design uses a 0.18 micrometer process implemented on a
high-resistivity epitaxial layer.Comment: Proceedings of the PIXEL 2018 Worksho
Charge collection and efficiency measurements of the TJ-Monopix2 DMAPS in 180nm CMOS technology
Monolithic CMOS pixel detectors have emerged as competitive contenders in the
field of high-energy particle physics detectors. By utilizing commercial
processes they offer high-volume production of such detectors. A series of
prototypes has been designed in a 180nm Tower process with depletion of the
sensor material and a column-drain readout architecture. The latest iteration,
TJ-Monopix2, features a large 2cm x 2cm matrix consisting of 512 x 512
pixels with 33.04um pitch. A small collection electrode design aims at low
power consumption and low noise while the radiation tolerance for high-energy
particle detector applications needs extra attention. With a goal to reach
radiation tolerance to levels of MeV ncm of
NIEL damage a modification of the standard process has been implemented by
adding a low-dosed n-type silicon implant across the pixel in order to allow
for homogeneous depletion of the sensor volume. Recent lab measurements and
beam tests were conducted for unirradiated modules to study electrical
characteristics and hit detection efficiency.Comment: Conference proceedings for PIXEL2022 conference, submitted to Po
omega-3 fatty acids contribute to the asthma-protective effect of unprocessed cow's milk
Background: Living on a farm has repeatedly been shown to protect children from asthma and allergies. A major factor involved in this effect is consumption of unprocessed cow's milk obtained directly from a farm. However, this phenomenon has never been shown in a longitudinal design, and the responsible milk components are still unknown. Objectives: We sought to assess the asthma-protective effect of unprocessed cow's milk consumption in a birth cohort and to determine whether the differences in the fatty acid (FA) composition of unprocessed farm milk and industrially processed milk contributed to this effect. Methods: The Protection Against Allergy-Study in Rural Environments (PASTURE) study followed 1133 children living in rural areas in 5 European countries from birth to age 6 years. In 934 children milk consumption was assessed by using yearly questionnaires, and samples of the ``usually'' consumed milk and serum samples of the children were collected at age 4 years. Doctor-diagnosed asthma was parent reported at age 6 years. In a nested case-control study of 35 asthmatic and 49 nonasthmatic children, 42 FAs were quantified in milk samples. Results: The risk of asthma at 6 years of age was reduced by previous consumption of unprocessed farm milk compared with shop milk (adjusted odds ratio for consumption at 4 years, 0.26; 95% CI,0.10-0.67). Part of the effect was explained by the higher fat content of farm milk, particularly the higher levels of omega-3 polyunsaturated FAs (adjusted odds ratio, 0.29; 95% CI,0.11-0.81). Conclusion: Continuous farm milk consumption in childhood protects against asthma at school age partially by means of higher intake of omega-3 polyunsaturated FAs, which are precursors of anti-inflammatory mediators.Peer reviewe
Latent class analysis reveals clinically relevant atopy phenotypes in 2 birth cohorts
Phenotypes of childhood-onset asthma are characterized by distinct trajectories and functional features. For atopy, definition of phenotypes during childhood is less clear.; We sought to define phenotypes of atopic sensitization over the first 6Â years of life using a latent class analysis (LCA) integrating 3 dimensions of atopy: allergen specificity, time course, and levels of specific IgE (sIgE).; Phenotypes were defined by means of LCA in 680 children of the Multizentrische Allergiestudie (MAS) and 766 children of the Protection against allergy: Study in Rural Environments (PASTURE) birth cohorts and compared with classical nondisjunctive definitions of seasonal, perennial, and food sensitization with respect to atopic diseases and lung function. Cytokine levels were measured in the PASTURE cohort.; The LCA classified predominantly by type and multiplicity of sensitization (food vs inhalant), allergen combinations, and sIgE levels. Latent classes were related to atopic disease manifestations with higher sensitivity and specificity than the classical definitions. LCA detected consistently in both cohorts a distinct group of children with severe atopy characterized by high seasonal sIgE levels and a strong propensity for asthma; hay fever; eczema; and impaired lung function, also in children without an established asthma diagnosis. Severe atopy was associated with an increased IL-5/IFN-Îł ratio. AÂ path analysis among sensitized children revealed that among all features of severe atopy, only excessive sIgE production early in life affected asthma risk.; LCA revealed a set of benign, symptomatic, and severe atopy phenotypes. The severe phenotype emerged as a latent condition with signs of a dysbalanced immune response. It determined high asthma risk through excessive sIgE production and directly affected impaired lung function
R&D Paths of Pixel Detectors for Vertex Tracking and Radiation Imaging
This report reviews current trends in the R&D of semiconductor pixellated
sensors for vertex tracking and radiation imaging. It identifies requirements
of future HEP experiments at colliders, needed technological breakthroughs and
highlights the relation to radiation detection and imaging applications in
other fields of science.Comment: 17 pages, 2 figures, submitted to the European Strategy Preparatory
Grou
Maturation of the gut microbiome during the first year of life contributes to the protective farm effect on childhood asthma
Peer reviewedPostprin
Radiation hardness of MALTA2 monolithic CMOS imaging sensors on Czochralski substrates
MALTA2 is the latest full-scale prototype of the MALTA family of Depleted Monolithic Active Pixel Sensors (DMAPS) produced in Tower Semiconductor 180 nm CMOS sensor imaging technology. In order to comply with the requirements of high energy physics (HEP) experiments, various process modifications and front-end changes have been implemented to achieve low power consumption, reduce random telegraph signal (RTS) noise, and optimise the charge collection geometry. Compared to its predecessors, MALTA2 targets the use of a high-resistivity, thick Czochralski (Cz) substrates in order to demonstrate radiation hardness in terms of detection efficiency and timing resolution up to 3 Ă 1015 1 MeV neq/cm2 with backside metallisation to achieve good propagation of the bias voltage. This manuscript shows the results that were obtained with non-irradiated and irradiated MALTA2 samples on Cz substrates from the CERN SPS test beam campaign from 2021 to 2023 using the MALTA telescope
Performance of the MALTA Telescope
MALTA is part of the Depleted Monolithic Active Pixel sensors designed in
Tower 180nm CMOS imaging technology. A custom telescope with six MALTA planes
has been developed for test beam campaigns at SPS, CERN, with the ability to
host several devices under test. The telescope system has a dedicated custom
readout, online monitoring integrated into DAQ with realtime hit map, time
distribution and event hit multiplicity. It hosts a dedicated fully
configurable trigger system enabling to trigger on coincidence between
telescope planes and timing reference from a scintillator. The excellent time
resolution performance allows for fast track reconstruction, due to the
possibility to retain a low hit multiplicity per event which reduces the
combinatorics. This paper reviews the architecture of the system and its
performance during the 2021 and 2022 test beam campaign at the SPS North Area
Maternal TLR signaling is required for prenatal asthma protection by the nonpathogenic microbe Acinetobacter lwoffii F78
The pre- and postnatal environment may represent a window of opportunity for allergy and asthma prevention, and the hygiene hypothesis implies that microbial agents may play an important role in this regard. Using the cowshed-derived bacterium Acinetobacter lwoffii F78 together with a mouse model of experimental allergic airway inflammation, this study investigated the hygiene hypothesis, maternal (prenatal) microbial exposure, and the involvement of Toll-like receptor (TLR) signaling in prenatal protection from asthma. Maternal intranasal exposure to A. lwoffii F78 protected against the development of experimental asthma in the progeny. Maternally, A. lwoffii F78 exposure resulted in a transient increase in lung and serum proinflammatory cytokine production and up-regulation of lung TLR messenger RNA. Conversely, suppression of TLRs was observed in placental tissue. To investigate further, the functional relevance of maternal TLR signaling was tested in TLR2/3/4/7/9â/â knockout mice. The asthma-preventive effect was completely abolished in heterozygous offspring from A. lwoffii F78âtreated TLR2/3/4/7/9â/â homozygous mother mice. Furthermore, the mild local and systemic inflammatory response was also absent in these A. lwoffii F78âexposed mothers. These data establish a direct relationship between maternal bacterial exposures, functional maternal TLR signaling, and asthma protection in the progeny
- âŠ