10 research outputs found

    Inductively shunted transmon qubit with tunable transverse and longitudinal coupling

    Full text link
    We present the design of an inductively shunted transmon qubit with flux-tunable coupling to an embedded harmonic mode. This circuit construction offers the possibility to flux-choose between pure transverse and pure longitudinal coupling, that is coupling to the σx\sigma_x or σz\sigma_z degree of freedom of the qubit. While transverse coupling is the coupling type that is most commonly used for superconducting qubits, the inherently different longitudinal coupling has some remarkable advantages both for readout and for the scalability of a circuit. Being able to choose between both kinds of coupling in the same circuit provides the flexibility to use one for coupling to the next qubit and one for readout, or vice versa. We provide a detailed analysis of the system's behavior using realistic parameters, along with a proposal for the physical implementation of a prototype device.Comment: 14 pages, 14 figure

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Conception of a test stand for Silicon Photomultipliers

    No full text
    This thesis treats the conception of a tunable light source as a test stand for silicon pho- tomultipliers. The main element is either a prism or a diffraction grating, used to disperse the light of a LED. A slit can be moved along the created spectrum, selecting a certain wavelength. A reference light source shall be used to calibrate the test stand, but is still in construction, as is the pulsed electronic for the LED. Apart from that, the test stand is working and ready for use. Both the version with the grating and the version with the prism work, even though the grating seems to be the better solution. After introducing some theoretical prerequisites (refraction, diffraction, interference), prism and grating as the two main elements of the test stand are presented in detail. A simula- tion is used to demonstrate how light is dispersed by prisms. After these preparations the positions of the slit can be converted into their respective wavelengths. In a first test measurement, the current in a PIN diode that is attached to the test stand is measured and plotted against the wavelength

    Design of an inductively shunted transmon qubit with tunable transverse and longitudinal coupling

    No full text
    Superconducting qubits are among the most promising and versatile building blocks on the road to a functioning quantum computer. One of the main challenges in superconducting qubit architectures is to couple qubits in a well-controlled manner, especially in circuit constructions that involve many qubits. In order to avoid unwanted cross-couplings, qubits are oftentimes coupled via harmonic resonators, which act as buses that mediate the interaction. This thesis is set in the framework of superconducting transmon-type qubit architectures with special focus on two important types of coupling between qubits and harmonic resonators: transverse and longitudinal coupling. While transverse coupling naturally appears in transmon-like circuit constructions, longitudinal coupling is much harder to implement and hardly ever the only coupling term present. Nevertheless, we will see that longitudinal coupling offers some remarkable advantages with respect to scalability and readout. This thesis will focus on a design, which combines both these coupling types in a single circuit and provides the possibility to choose between pure transverse and pure longitudinal or have both at the same time. The ability to choose between transverse and longitudinal coupling in the same circuit provides the flexibility to use one for coupling to the next qubit and one for readout, or vice versa. We will start with an introduction to circuit quantization, where we will explain how to describe and analyze superconducting electrical circuits in a systematic way and discuss which characteristic circuit elements make up qubits and resonators. We will then introduce the two types of coupling between qubit and resonator which are provided in our design: transverse and longitudinal coupling. In order to show that longitudinal coupling has some remarkable advantages with respect to the scalability of a circuit, we will discuss a scalable qubit architecture, which can be implemented with our design. Translating this discussion from the Hamiltonian level to the language of circuit quantization, we will show how to design circuits with specifically tailored couplings. Having introduced these basic concepts, we will focus on our circuit design that consists of an inductively shunted transmon qubit with tunable coupling to an embedded harmonic mode. Using a symmetric design, static transverse coupling terms are canceled out, while the parity of the only remaining coupling term can be tuned via an external flux. The distinctive feature of the tunable design is that the transverse coupling disappears when the longitudinal is maximal and vice versa. Subsequently, we will turn to the implementation of our circuit design, discuss how to choose the parameters, and present an adapted alternative circuit, where coupling strength and anharmonicity scale better than in the original circuit. Furthermore, we show how the anharmonicity and the coupling can be boosted by additional flux-biasing. We will see that for conveniently chosen parameters longitudinal and transverse coupling have comparable values, while all other coupling terms can be suppressed. In addition, we present a proposal for an experimental device that will serve as a prototype for a first experiment. Coming back to the scalable architecture mentioned above, we will show how our design can be scaled up to a grid, which can be done in modular fashion with strictly local couplings. In such a grid of fixed-frequency qubits and resonators with a particular pattern of always-on interactions, coupling is strictly confined to nearest and next-nearest neighbor resonators; there is never any direct qubit-qubit coupling. We will conclude the thesis discussing different possibilities to do readout with our circuit design, including a short discussion of the coupling between the circuit and the environment, and the influence of dissipation

    Circuit design implementing longitudinal coupling: A scalable scheme for superconducting qubits

    Get PDF
    We present a circuit construction for a new fixed-frequency superconducting qubit and show how it can be scaled up to a grid with strictly local interactions. The circuit QED realization we propose implements σz\sigma_z-type coupling between a superconducting qubit and any number of LCLC resonators. The resulting \textit{longitudinal coupling} is inherently different from the usual σx\sigma_x-type \textit{transverse coupling}, which is the one that has been most commonly used for superconducting qubits. In a grid of fixed-frequency qubits and resonators with a particular pattern of always-on interactions, coupling is strictly confined to nearest and next-nearest neighbor resonators; there is never any direct qubit-qubit coupling. We note that just four distinct resonator frequencies, and only a single unique qubit frequency, suffice for the scalability of this scheme. A controlled phase gate between two neighboring qubits can be realized with microwave drives on the qubits, without affecting the other qubits. This fact is a supreme advantage for the scalability of this scheme.Comment: 10 pages, 9 figure
    corecore