228 research outputs found
An HST/ACS View of the Inhomogeneous Outer Halo of M31
We present a high precision photometric view of the stellar populations in
the outer halo of M31, using data taken with the Hubble Space Telescope
Advanced Camera for Surveys (HST/ACS). We analyse the field populations
adjacent to 11 luminous globular clusters which sample the galactocentric
radial range 18 < R < 100 kpc and reach a photometric depth of ~2.5 magnitudes
below the horizontal branch (m_F814W ~27 mag). The colour-magnitude diagrams
(CMDs) are well populated out to ~60 kpc and exhibit relatively metal-rich red
giant branches, with the densest fields also showing evidence for prominent red
clumps. We use the Dartmouth isochrones to construct metallicity distribution
functions (MDFs) which confirm the presence of dominant populations with
= -0.6 to -1.0 dex and considerable metallicity dispersions of 0.2 to
0.3 dex (assuming a 10 Gyr population and scaled-Solar abundances). The average
metallicity over the range 30 - 60 kpc is [Fe/H] = -0.8 +/- 0.14 dex, with no
evidence for a significant radial gradient. Metal-poor stars ([Fe/H] <= -1.3)
typically account for < 10-20 % of the population in each field, irrespective
of radius. Assuming our fields are unbiased probes of the dominant stellar
populations in these parts, we find that the M31 outer halo remains
considerably more metal-rich than that of the Milky Way out to at least 60 kpc.Comment: Accepted for publication in MNRAS. 10 pages, 6 figure
Interfacial engineering of semiconductor–superconductor junctions for high performance micro-coolers
The control of electronic and thermal transport through material interfaces is crucial for numerous micro and nanoelectronics applications and quantum devices. Here we report on the engineering of the electro-thermal properties of semiconductor-superconductor (Sm-S) electronic cooler junctions by a nanoscale insulating tunnel barrier introduced between the Sm and S electrodes. Unexpectedly, such an interface barrier does not increase the junction resistance but strongly reduces the detrimental sub-gap leakage current. These features are key to achieving high cooling power tunnel junction refrigerators, and we demonstrate unparalleled performance in silicon-based Sm-S electron cooler devices with orders of magnitudes improvement in the cooling power in comparison to previous works. By adapting the junctions in strain-engineered silicon coolers we also demonstrate efficient electron temperature reduction from 300 mK to below 100 mK. Investigations on junctions with different interface quality indicate that the previously unexplained sub-gap leakage current is strongly influenced by the Sm-S interface states. These states often dictate the junction electrical resistance through the well-known Fermi level pinning effect and, therefore, superconductivity could be generally used to probe and optimize metal-semiconductor contact behaviour
The Panchromatic Hubble Andromeda Treasury II. Tracing the Inner M31 Halo with Blue Horizontal Branch Stars
We attempt to constrain the shape of M31's inner stellar halo by tracing the
surface density of blue horizontal branch (BHB) stars at galactocentric
distances ranging from 2 kpc to 35 kpc. Our measurements make use of resolved
stellar photometry from a section of the Panchromatic Hubble Andromeda Treasury
(PHAT) survey, supplemented by several archival Hubble Space Telescope
observations. We find that the ratio of BHB to red giant stars is relatively
constant outside of 10 kpc, suggesting that the BHB is as reliable a tracer of
the halo population as the red giant branch. In the inner halo, we do not
expect BHB stars to be produced by the high metallicity bulge and disk, making
BHB stars a good candidate to be a reliable tracer of the stellar halo to much
smaller galactocentric distances. If we assume a power-law profile r^(-\alpha)
for the 2-D projected surface density BHB distribution, we obtain a
high-quality fit with a 2-D power-law index of \alpha=2.6^{+0.3}_{-0.2} outside
of 3 kpc, which flattens to \alpha<1.2 inside of 3 kpc. This slope is
consistent with previous measurements but is anchored to a radial baseline that
extends much farther inward. Finally, assuming azimuthal symmetry and a
constant mass-to-light ratio, the best-fitting profile yields a total halo
stellar mass of 2.1^{+1.7}_{-0.4} x 10^9 M_sun. These properties are comparable
with both simulations of stellar halo formation formed by satellite disruption
alone, and with simulations that include some in situ formation of halo stars.Comment: 15 pages, 1 table, 5 figures, accepted for publication in Ap
The SPLASH Survey: A Spectroscopic Portrait of Andromeda's Giant Southern Stream
The giant southern stream (GSS) is the most prominent tidal debris feature in
M31's stellar halo. The GSS is composed of a relatively metal-rich, high
surface-brightness "core" and a lower metallicity, lower surface brightness
"envelope." We present Keck/DEIMOS spectroscopy of red giant stars in six
fields in the vicinity of M31's GSS and one field on Stream C, an arc-like
feature on M31's SE minor axis at R=60 kpc. Several GSS-related findings and
measurements are presented here. We present the innermost kinematical detection
of the GSS core to date (R=17 kpc). This field also contains the continuation
of a second kinematically cold component originally seen in a GSS core field at
R=21 kpc. The velocity gradients of the GSS and the second component in the
combined data set are parallel over a radial range of 7 kpc, suggesting a
possible bifurcation in the line-of-sight velocities of GSS stars. We also
present the first kinematical detection of substructure in the GSS envelope.
Using kinematically identified samples, we show that the envelope debris has a
~0.7 dex lower mean photometric metallicity and possibly higher intrinsic
velocity dispersion than the GSS core. The GSS is also identified in the field
of the M31 dSph satellite And I; the GSS in this field has a metallicity
distribution identical to that of the GSS core. We confirm the presence of two
kinematically cold components in Stream C, and measure intrinsic velocity
dispersions of ~10 and ~4 km/s. This compilation of the kinematical (mean
velocity, intrinsic velocity dispersion) and chemical properties of stars in
the GSS core and envelope, coupled with published surface brightness
measurements and wide-area star-count maps, will improve constraints on the
orbit and internal structure of the dwarf satellite progenitor.Comment: Accepted for publication in Ap
Type IIn supernovae at z ~ 2 from archival data
Supernovae have been confirmed to redshift z ~ 1.7 for type Ia (thermonuclear
detonation of a white dwarf) and to z ~ 0.7 for type II (collapse of the core
of the star). The subclass type IIn supernovae are luminous core-collapse
explosions of massive stars and, unlike other types, are very bright in the
ultraviolet, which should enable them to be found optically at redshifts z ~ 2
and higher. In addition, the interaction of the ejecta with circumstellar
material creates strong, long-lived emission lines that allow spectroscopic
confirmation of many events of this type at z ~ 2 for 3 - 5 years after
explosion. Here we report three spectroscopically confirmed type IIn
supernovae, at redshifts z = 0.808, 2.013 and 2.357, detected in archival data
using a method designed to exploit these properties at z ~ 2. Type IIn
supernovae directly probe the formation of massive stars at high redshift. The
number found to date is consistent with the expectations of a locally measured
stellar initial mass function, but not with an evolving initial mass function
proposed to explain independent observations at low and high redshift.Comment: 8 pages, 2 figures, includes supplementary informatio
IPBES Invasive Alien Species Assessment: Chapter 1. Introducing biological invasions and the IPBES thematic assessment of invasive alien species and their control
Chapter 1: Introducing biological invasions and the IPBES thematic assessment of invasive alien species and their control of the Thematic Assessment Report on Invasive Alien Species and their Control of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services
Seasonal melting and the formation of sedimentary rocks on Mars, with predictions for the Gale Crater mound
A model for the formation and distribution of sedimentary rocks on Mars is
proposed. The rate-limiting step is supply of liquid water from seasonal
melting of snow or ice. The model is run for a O(10^2) mbar pure CO2
atmosphere, dusty snow, and solar luminosity reduced by 23%. For these
conditions snow only melts near the equator, and only when obliquity >40
degrees, eccentricity >0.12, and perihelion occurs near equinox. These
requirements for melting are satisfied by 0.01-20% of the probability
distribution of Mars' past spin-orbit parameters. Total melt production is
sufficient to account for aqueous alteration of the sedimentary rocks. The
pattern of seasonal snowmelt is integrated over all spin-orbit parameters and
compared to the observed distribution of sedimentary rocks. The global
distribution of snowmelt has maxima in Valles Marineris, Meridiani Planum and
Gale Crater. These correspond to maxima in the sedimentary-rock distribution.
Higher pressures and especially higher temperatures lead to melting over a
broader range of spin-orbit parameters. The pattern of sedimentary rocks on
Mars is most consistent with a Mars paleoclimate that only rarely produced
enough meltwater to precipitate aqueous cements and indurate sediment. The
results suggest intermittency of snowmelt and long globally-dry intervals,
unfavorable for past life on Mars. This model makes testable predictions for
the Mars Science Laboratory rover at Gale Crater. Gale Crater is predicted to
be a hemispheric maximum for snowmelt on Mars.Comment: Submitted to Icarus. Minor changes from submitted versio
- …