501 research outputs found

    First light for avian embryos: eggshell thickness and pigmentation mediate variation in development and UV exposure in wild bird eggs

    Get PDF
    Article first published online: 29 JUL 20141. The avian embryo's development is influenced by both the amount and the wavelength of the light that passes through the eggshell. Commercial poultry breeders use light of specific wavelengths to accelerate embryonic growth, yet the effects of the variably patterned eggshells of wild bird species on light transmission and embryonic development remain largely unexplored. 2. Here, we provide the first comparative phylogenetic analysis of light transmission, through a diverse range of bird eggshells (74 British breeding species), in relation to the eggshell's thickness, permeability, pigment concentration and surface reflectance spectrum (colour). 3. The percentage of light transmitted through the eggshell was measured in the spectral range 250–700 nm. Our quantitative analyses confirm anecdotal reports that eggshells filter the light of the externally coloured shell. Specifically, we detected a positive relationship between surface eggshell reflectance (‘brightness’) and the percentage of light transmitted through the eggshell, and this relationship was strongest at wavelengths in the human-visible blue-green region of the spectra (c. 435 nm). 4. We show that less light passes through thicker eggshells with greater total pigment concentrations. By contrast, permeability (measured as water vapour conductance) did not covary significantly with light transmission. Eggs of closed-nesting species let more light pass through, compared with open nesters. 5. We postulate that greater light transmission is required to assist embryonic development under low light exposure. Importantly, this result provides an ecological explanation for the repeated evolution of immaculate, white- or pale-coloured eggshells in species nesting in enclosed spaces. 6. Finally, we detected correlative support for the solar radiation hypothesis, in that eggshells of bird species with a longer incubation period let significantly less of the potentially harmful, ultraviolet (UV) light pass through the eggshell. In summary, we demonstrate suites of avian eggshell properties, including eggshell structure and pigmentation, which are consistent with an evolutionary pressure to both enhance and protect embryonic development.Golo Maurer, Steven J. Portugal, Mark E. Hauber, Ivan Mikơík, Douglas G. D. Russell and Phillip Casse

    Language Learning, Recasts, and Interaction Involving AAC: Background and Potential for Intervention

    Get PDF
    For children with typical development, language is learned through everyday discursive interaction. Adults mediate child participation in such interactions through the deployment of a range of co-constructive strategies, including repeating, questioning, prompting, expanding, and reformulating the child’s utterances. Adult reformulations of child utterances, also known as recasts, have also been shown to relate to the acquisition of linguistic structures in children with language and learning disabilities and children and adults learning a foreign language. In this paper we discuss the theoretical basis and empirical evidence for the use of different types of recasts as a major language learning catalyst, and what may account for their facilitative effects. We consider the occurrence of different types of recasts in AAC-mediated interactions and their potential for language facilitation, within the typical operational and linguistic constraints of such interactions. We also consider the benefit of explicit and corrective forms of recasts for language facilitation in conversations with children who rely on AAC. We conclude by outlining future research directions

    Absence of First-order Transition and Tri-critical Point in the Dynamic Phase Diagram of a Spatially Extended Bistable System in an Oscillating Field

    Full text link
    It has been well established that spatially extended, bistable systems that are driven by an oscillating field exhibit a nonequilibrium dynamic phase transition (DPT). The DPT occurs when the field frequency is on the order of the inverse of an intrinsic lifetime associated with the transitions between the two stable states in a static field of the same magnitude as the amplitude of the oscillating field. The DPT is continuous and belongs to the same universality class as the equilibrium phase transition of the Ising model in zero field [G. Korniss et al., Phys. Rev. E 63, 016120 (2001); H. Fujisaka et al., Phys. Rev. E 63, 036109 (2001)]. However, it has previously been claimed that the DPT becomes discontinuous at temperatures below a tricritical point [M. Acharyya, Phys. Rev. E 59, 218 (1999)]. This claim was based on observations in dynamic Monte Carlo simulations of a multipeaked probability density for the dynamic order parameter and negative values of the fourth-order cumulant ratio. Both phenomena can be characteristic of discontinuous phase transitions. Here we use classical nucleation theory for the decay of metastable phases, together with data from large-scale dynamic Monte Carlo simulations of a two-dimensional kinetic Ising ferromagnet, to show that these observations in this case are merely finite-size effects. For sufficiently small systems and low temperatures, the continuous DPT is replaced, not by a discontinuous phase transition, but by a crossover to stochastic resonance. In the infinite-system limit the stochastic-resonance regime vanishes, and the continuous DPT should persist for all nonzero temperatures

    Using GIS-linked Bayesian Belief Networks as a tool for modelling urban biodiversity

    Get PDF
    The ability to predict spatial variation in biodiversity is a long-standing but elusive objective of landscape ecology. It depends on a detailed understanding of relationships between landscape and patch structure and taxonomic richness, and accurate spatial modelling. Complex heterogeneous environments such as cities pose particular challenges, as well as heightened relevance, given the increasing rate of urbanisation globally. Here we use a GIS-linked Bayesian Belief Network approach to test whether landscape and patch structural characteristics (including vegetation height, green-space patch size and their connectivity) drive measured taxonomic richness of numerous invertebrate, plant, and avian groups. We find that modelled richness is typically higher in larger and better-connected green-spaces with taller vegetation, indicative of more complex vegetation structure and consistent with the principle of ‘bigger, better, and more joined up’. Assessing the relative importance of these variables indicates that vegetation height is the most influential in determining richness for a majority of taxa. There is variation, however, between taxonomic groups in the relationships between richness and landscape structural characteristics, and the sensitivity of these relationships to particular predictors. Consequently, despite some broad commonalities, there will be trade-offs between different taxonomic groups when designing urban landscapes to maximise biodiversity. This research demonstrates the feasibility of using a GIS-coupled Bayesian Belief Network approach to model biodiversity at fine spatial scales in complex landscapes where current data and appropriate modelling approaches are lacking, and our findings have important implications for ecologists, conservationists and planners

    Observing Supermassive Black Holes across cosmic time: from phenomenology to physics

    Full text link
    In the last decade, a combination of high sensitivity, high spatial resolution observations and of coordinated multi-wavelength surveys has revolutionized our view of extra-galactic black hole (BH) astrophysics. We now know that supermassive black holes reside in the nuclei of almost every galaxy, grow over cosmological times by accreting matter, interact and merge with each other, and in the process liberate enormous amounts of energy that influence dramatically the evolution of the surrounding gas and stars, providing a powerful self-regulatory mechanism for galaxy formation. The different energetic phenomena associated to growing black holes and Active Galactic Nuclei (AGN), their cosmological evolution and the observational techniques used to unveil them, are the subject of this chapter. In particular, I will focus my attention on the connection between the theory of high-energy astrophysical processes giving rise to the observed emission in AGN, the observable imprints they leave at different wavelengths, and the methods used to uncover them in a statistically robust way. I will show how such a combined effort of theorists and observers have led us to unveil most of the SMBH growth over a large fraction of the age of the Universe, but that nagging uncertainties remain, preventing us from fully understating the exact role of black holes in the complex process of galaxy and large-scale structure formation, assembly and evolution.Comment: 46 pages, 21 figures. This review article appears as a chapter in the book: "Astrophysical Black Holes", Haardt, F., Gorini, V., Moschella, U and Treves A. (Eds), 2015, Springer International Publishing AG, Cha

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore