It has been well established that spatially extended, bistable systems that
are driven by an oscillating field exhibit a nonequilibrium dynamic phase
transition (DPT). The DPT occurs when the field frequency is on the order of
the inverse of an intrinsic lifetime associated with the transitions between
the two stable states in a static field of the same magnitude as the amplitude
of the oscillating field. The DPT is continuous and belongs to the same
universality class as the equilibrium phase transition of the Ising model in
zero field [G. Korniss et al., Phys. Rev. E 63, 016120 (2001); H. Fujisaka et
al., Phys. Rev. E 63, 036109 (2001)]. However, it has previously been claimed
that the DPT becomes discontinuous at temperatures below a tricritical point
[M. Acharyya, Phys. Rev. E 59, 218 (1999)]. This claim was based on
observations in dynamic Monte Carlo simulations of a multipeaked probability
density for the dynamic order parameter and negative values of the fourth-order
cumulant ratio. Both phenomena can be characteristic of discontinuous phase
transitions. Here we use classical nucleation theory for the decay of
metastable phases, together with data from large-scale dynamic Monte Carlo
simulations of a two-dimensional kinetic Ising ferromagnet, to show that these
observations in this case are merely finite-size effects. For sufficiently
small systems and low temperatures, the continuous DPT is replaced, not by a
discontinuous phase transition, but by a crossover to stochastic resonance. In
the infinite-system limit the stochastic-resonance regime vanishes, and the
continuous DPT should persist for all nonzero temperatures