973 research outputs found
Adaptive Lévy processes and area-restricted search in human foraging
A considerable amount of research has claimed that animals’ foraging behaviors display movement lengths with power-law distributed tails, characteristic of Lévy flights and Lévy walks. Though these claims have recently come into question, the proposal that many animals forage using Lévy processes nonetheless remains. A Lévy process does not consider when or where resources are encountered, and samples movement lengths independently of past experience. However, Lévy processes too have come into question based on the observation that in patchy resource environments resource-sensitive foraging strategies, like area-restricted search, perform better than Lévy flights yet can still generate heavy-tailed distributions of movement lengths. To investigate these questions further, we tracked humans as they searched for hidden resources in an open-field virtual environment, with either patchy or dispersed resource distributions. Supporting previous research, for both conditions logarithmic binning methods were consistent with Lévy flights and rank-frequency methods–comparing alternative distributions using maximum likelihood methods–showed the strongest support for bounded power-law distributions (truncated Lévy flights). However, goodness-of-fit tests found that even bounded power-law distributions only accurately characterized movement behavior for 4 (out of 32) participants. Moreover, paths in the patchy environment (but not the dispersed environment) showed a transition to intensive search following resource encounters, characteristic of area-restricted search. Transferring paths between environments revealed that paths generated in the patchy environment were adapted to that environment. Our results suggest that though power-law distributions do not accurately reflect human search, Lévy processes may still describe movement in dispersed environments, but not in patchy environments–where search was area-restricted. Furthermore, our results indicate that search strategies cannot be inferred without knowing how organisms respond to resources–as both patched and dispersed conditions led to similar Lévy-like movement distributions
Photoswitchable diacylglycerols enable optical control of protein kinase C.
Increased levels of the second messenger lipid diacylglycerol (DAG) induce downstream signaling events including the translocation of C1-domain-containing proteins toward the plasma membrane. Here, we introduce three light-sensitive DAGs, termed PhoDAGs, which feature a photoswitchable acyl chain. The PhoDAGs are inactive in the dark and promote the translocation of proteins that feature C1 domains toward the plasma membrane upon a flash of UV-A light. This effect is quickly reversed after the termination of photostimulation or by irradiation with blue light, permitting the generation of oscillation patterns. Both protein kinase C and Munc13 can thus be put under optical control. PhoDAGs control vesicle release in excitable cells, such as mouse pancreatic islets and hippocampal neurons, and modulate synaptic transmission in Caenorhabditis elegans. As such, the PhoDAGs afford an unprecedented degree of spatiotemporal control and are broadly applicable tools to study DAG signaling
Cysteine oxidation targets peroxiredoxins 1 and 2 for exosomal release through a novel mechanism of redox-dependent secretion
Non-classical protein secretion is of major importance as a number of cytokines and inflammatory mediators are secreted via this route. Current evidence indicates that there are several mechanistically distinct methods of non-classical secretion. We have recently shown that peroxiredoxin (Prdx) 1 and Prdx2 are released by various cells upon exposure to inflammatory stimuli such as LPS or TNF-α. The released Prdx then acts to induce production of inflammatory cytokines. However, Prdx1 and 2 do not have signal peptides and therefore must be secreted by alternative mechanisms as has been postulated for the inflammatory mediators IL-1β and HMGB1. We show here that circulating Prdx1 and 2 are present exclusively as disulphide-linked homodimers. Inflammatory stimuli also induce in vitro release of Prdx1 and 2 as disulfide-linked homodimers. Mutation of cysteines Cys51 or Cys172 (but not Cys70) in Prdx2, and Cys52 or Cys173 (but not Cys71 or Cys83) in Prdx1 prevented dimer formation and this was associated with inhibition of their TNF-α-induced release. Thus, the presence and oxidation of key cysteine residues in these proteins are a prerequisite for their secretion in response to TNF-α and this release can be induced with an oxidant. In contrast, the secretion of the nuclear-associated danger signal HMGB1 is independent of cysteine oxidation, as shown by experiments with a cysteine-free HMGB1 mutant. Release of Prdx1 and 2 is not prevented by inhibitors of the classical secretory pathway; instead, both Prdx1 and 2 are released in exosomes from both HEK cells and monocytic cells. Serum Prdx1 and 2 are also associated with the exosomes. These results describe a novel pathway of protein secretion mediated by cysteine oxidation that underlines the importance of redox-dependent signalling mechanisms in inflammation
Potential health impacts of heavy metals on HIV-infected population in USA.
Noninfectious comorbidities such as cardiovascular diseases have become increasingly prevalent and occur earlier in life in persons with HIV infection. Despite the emerging body of literature linking environmental exposures to chronic disease outcomes in the general population, the impacts of environmental exposures have received little attention in HIV-infected population. The aim of this study is to investigate whether individuals living with HIV have elevated prevalence of heavy metals compared to non-HIV infected individuals in United States. We used the National Health and Nutrition Examination Survey (NHANES) 2003-2010 to compare exposures to heavy metals including cadmium, lead, and total mercury in HIV infected and non-HIV infected subjects. In this cross-sectional study, we found that HIV-infected individuals had higher concentrations of all heavy metals than the non-HIV infected group. In a multivariate linear regression model, HIV status was significantly associated with increased blood cadmium (p=0.03) after adjusting for age, sex, race, education, poverty income ratio, and smoking. However, HIV status was not statistically associated with lead or mercury levels after adjusting for the same covariates. Our findings suggest that HIV-infected patients might be significantly more exposed to cadmium compared to non-HIV infected individuals which could contribute to higher prevalence of chronic diseases among HIV-infected subjects. Further research is warranted to identify sources of exposure and to understand more about specific health outcomes
An approach for the identification of targets specific to bone metastasis using cancer genes interactome and gene ontology analysis
Metastasis is one of the most enigmatic aspects of cancer pathogenesis and is
a major cause of cancer-associated mortality. Secondary bone cancer (SBC) is a
complex disease caused by metastasis of tumor cells from their primary site and
is characterized by intricate interplay of molecular interactions.
Identification of targets for multifactorial diseases such as SBC, the most
frequent complication of breast and prostate cancers, is a challenge. Towards
achieving our aim of identification of targets specific to SBC, we constructed
a 'Cancer Genes Network', a representative protein interactome of cancer genes.
Using graph theoretical methods, we obtained a set of key genes that are
relevant for generic mechanisms of cancers and have a role in biological
essentiality. We also compiled a curated dataset of 391 SBC genes from
published literature which serves as a basis of ontological correlates of
secondary bone cancer. Building on these results, we implement a strategy based
on generic cancer genes, SBC genes and gene ontology enrichment method, to
obtain a set of targets that are specific to bone metastasis. Through this
study, we present an approach for probing one of the major complications in
cancers, namely, metastasis. The results on genes that play generic roles in
cancer phenotype, obtained by network analysis of 'Cancer Genes Network', have
broader implications in understanding the role of molecular regulators in
mechanisms of cancers. Specifically, our study provides a set of potential
targets that are of ontological and regulatory relevance to secondary bone
cancer.Comment: 54 pages (19 pages main text; 11 Figures; 26 pages of supplementary
information). Revised after critical reviews. Accepted for Publication in
PLoS ON
Deletion of PTH Rescues Skeletal Abnormalities and High Osteopontin Levels in Klotho−/− Mice
Maintenance of normal mineral ion homeostasis is crucial for many biological activities, including proper mineralization of the skeleton. Parathyroid hormone (PTH), Klotho, and FGF23 have been shown to act as key regulators of serum calcium and phosphate homeostasis through a complex feedback mechanism. The phenotypes of Fgf23−/− and Klotho−/− (Kl−/−) mice are very similar and include hypercalcemia, hyperphosphatemia, hypervitaminosis D, suppressed PTH levels, and severe osteomalacia/osteoidosis. We recently reported that complete ablation of PTH from Fgf23−/− mice ameliorated the phenotype in Fgf23−/−/PTH−/− mice by suppressing serum vitamin D and calcium levels. The severe osteomalacia in Fgf23−/− mice, however, persisted, suggesting that a different mechanism is responsible for this mineralization defect. In the current study, we demonstrate that deletion of PTH from Kl−/− (Kl−/−/PTH−/− or DKO) mice corrects the abnormal skeletal phenotype. Bone turnover markers are restored to wild-type levels; and, more importantly, the skeletal mineralization defect is completely rescued in Kl−/−/PTH−/− mice. Interestingly, the correction of the osteomalacia is accompanied by a reduction in the high levels of osteopontin (Opn) in bone and serum. Such a reduction in Opn levels could not be observed in Fgf23−/−/PTH−/− mice, and these mice showed sustained osteomalacia. This significant in vivo finding is corroborated by in vitro studies using calvarial osteoblast cultures that show normalized Opn expression and rescued mineralization in Kl−/−/PTH−/− mice. Moreover, continuous PTH infusion of Kl−/− mice significantly increased Opn levels and osteoid volume, and decreased trabecular bone volume. In summary, our results demonstrate for the first time that PTH directly impacts the mineralization disorders and skeletal deformities of Kl−/−, but not of Fgf23−/− mice, possibly by regulating Opn expression. These are significant new perceptions into the role of PTH in skeletal and disease processes and suggest FGF23-independent interactions of PTH with Klotho
Frequencies of BCR-ABL1 fusion transcripts among Sudanese chronic myeloid leukaemia patients
The incidence of one or other rearrangement in chronic myeloid leukemia (CML) patients varies in different reported series. In this study we report the frequencies of BCR-ABL1 fusion transcript variants studied in 43 CML patients from Sudan. The study includes 46 Sudanese patients, three of which negative for the BCR-ABL1 fusion transcript. More than half of 43 positive patients showed b2a2 fusion transcript (53.5%), while (41.9%) showed b3a2 transcript and the remaining (4.6%) coexpression of b3a2/ b2a2 and b3a2/b2a2/e19a2. We detected neither coexpression of p210/p190 nor e1a2 alone. Male patients showed a tendency to express b2a2, while female tende to express b3a2 (p = 0.017). Moreover, a single nucleotide polymorphism was detected in BCR exon 13 in one out of four patients and this patient showed only b2a2 expression. In conclusion, we observed a significant correlation between sex and type of BCR-ABL1 transcript, an observation that deserves further investigation
The efficacy of various machine learning models for multi-class classification of RNA-seq expression data
Late diagnosis and high costs are key factors that negatively impact the care
of cancer patients worldwide. Although the availability of biological markers
for the diagnosis of cancer type is increasing, costs and reliability of tests
currently present a barrier to the adoption of their routine use. There is a
pressing need for accurate methods that enable early diagnosis and cover a
broad range of cancers. The use of machine learning and RNA-seq expression
analysis has shown promise in the classification of cancer type. However,
research is inconclusive about which type of machine learning models are
optimal. The suitability of five algorithms were assessed for the
classification of 17 different cancer types. Each algorithm was fine-tuned and
trained on the full array of 18,015 genes per sample, for 4,221 samples (75 %
of the dataset). They were then tested with 1,408 samples (25 % of the dataset)
for which cancer types were withheld to determine the accuracy of prediction.
The results show that ensemble algorithms achieve 100% accuracy in the
classification of 14 out of 17 types of cancer. The clustering and
classification models, while faster than the ensembles, performed poorly due to
the high level of noise in the dataset. When the features were reduced to a
list of 20 genes, the ensemble algorithms maintained an accuracy above 95% as
opposed to the clustering and classification models.Comment: 12 pages, 4 figures, 3 tables, conference paper: Computing Conference
2019, published at
https://link.springer.com/chapter/10.1007/978-3-030-22871-2_6
Diversity in Functional Organization of Class I and Class II Biotin Protein Ligase
The cell envelope of Mycobacterium tuberculosis
(M.tuberculosis) is composed of a variety of lipids
including mycolic acids, sulpholipids, lipoarabinomannans, etc., which impart
rigidity crucial for its survival and pathogenesis. Acyl CoA carboxylase (ACC)
provides malonyl-CoA and methylmalonyl-CoA, committed precursors for fatty acid
and essential for mycolic acid synthesis respectively. Biotin Protein Ligase
(BPL/BirA) activates apo-biotin carboxyl carrier protein (BCCP) by biotinylating
it to an active holo-BCCP. A minimal peptide (Schatz), an efficient substrate
for Escherichia coli BirA, failed to serve as substrate for
M. tuberculosis Biotin Protein Ligase
(MtBPL). MtBPL specifically biotinylates
homologous BCCP domain, MtBCCP87, but not
EcBCCP87. This is a unique feature of
MtBPL as EcBirA lacks such a stringent
substrate specificity. This feature is also reflected in the lack of
self/promiscuous biotinylation by MtBPL. The N-terminus/HTH
domain of EcBirA has the self-biotinable lysine residue that is
inhibited in the presence of Schatz peptide, a peptide designed to act as a
universal acceptor for EcBirA. This suggests that when biotin
is limiting, EcBirA preferentially catalyzes, biotinylation of
BCCP over self-biotinylation. R118G mutant of EcBirA showed
enhanced self and promiscuous biotinylation but its homologue, R69A
MtBPL did not exhibit these properties. The catalytic
domain of MtBPL was characterized further by limited
proteolysis. Holo-MtBPL is protected from proteolysis by
biotinyl-5′ AMP, an intermediate of MtBPL catalyzed
reaction. In contrast, apo-MtBPL is completely digested by
trypsin within 20 min of co-incubation. Substrate selectivity and inability to
promote self biotinylation are exquisite features of MtBPL and
are a consequence of the unique molecular mechanism of an enzyme adapted for the
high turnover of fatty acid biosynthesis
- …