138 research outputs found

    Chemical Abundance Constraints on White Dwarfs as Halo Dark Matter

    Get PDF
    We examine the chemical abundance constraints on a population of white dwarfs in the Halo of our Galaxy. We are motivated by microlensing evidence for massive compact halo objects (Machos) in the Galactic Halo, but our work constrains white dwarfs in the Halo regardless of what the Machos are. We focus on the composition of the material that would be ejected as the white dwarfs are formed; abundance patterns in the ejecta strongly constrain white dwarf production scenarios. Using both analytical and numerical chemical evolution models, we confirm that very strong constraints come from Galactic Pop II and extragalactic carbon abundances. We also point out that depending on the stellar model, significant nitrogen is produced rather than carbon. The combined constraints from C and N give ΩWDh<2×104\Omega_{WD} h < 2 \times 10^{-4} from comparison with the low C and N abundances in the Lyα\alpha forest. We note, however, that these results are subject to uncertainties regarding the nucleosynthesis of low-metallicity stars. We thus investigate additional constraints from D and 4^4He, finding that these light elements can be kept within observational limits only for \Omega_{WD} \la 0.003 and for a white dwarf progenitor initial mass function sharply peaked at low mass (2MM_\odot). Finally, we consider a Galactic wind, which is required to remove the ejecta accompanying white dwarf production from the galaxy. We show that such a wind can be driven by Type Ia supernovae arising from the white dwarfs themselves, but these supernovae also lead to unacceptably large abundances of iron. We conclude that abundance constraints exclude white dwarfs as Machos. (abridged)Comment: Written in AASTeX, 26 pages plus 4 ps figure

    Behavioral and metabolic effects of sublethal doses of two insecticides, chlorpyrifos and methomyl, in the Egyptian cotton leafworm, Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae)

    No full text
    International audienceInsecticides have long been used as the main method in limiting agricultural pests, but their widespread use has resulted in environmental pollution, development of resistances, and biodiversity reduction. The effects of insecticides at low residual doses on both the targeted crop pest species and beneficial insects have become a major concern. In particular, these low doses can induce unexpected positive (hormetic) effects on pest insects, such as surges in population growth exceeding what would have been observed without pesticide application. Methomyl and chlorpyrifos are two insecticides commonly used to control the population levels of the cotton leafworm Spodoptera littoralis, a major pest moth. The aim of the present study was to examine the effects of sublethal doses of these two pesticides, known to present a residual activity and persistence in the environment, on the moth physiology. Using a metabolomic approach, we showed that sublethal doses of methomyl and chlorpyrifos have a systemic effect on the treated insects. We also demonstrated a behavioral disruption of S. littoralis larvae exposed to sublethal doses of methomyl, whereas no effects were observed for the same doses of chlorpyrifos. Interestingly, we highlighted that sublethal doses of both pesticides did not induce a change in acetylcholinesterase activity in head of exposed larva

    Spectroscopic and Mechanistic Studies of Heterodimetallic Forms of Metallo-β-lactamase NDM-1

    Get PDF
    In an effort to characterize the roles of each metal ion in metallo-β-lactamase NDM-1, heterodimetallic analogues (CoCo-, ZnCo-, and CoCd-) of the enzyme were generated and characterized. UV–vis, 1H NMR, EPR, and EXAFS spectroscopies were used to confirm the fidelity of the metal substitutions, including the presence of a homogeneous, heterodimetallic cluster, with a single-atom bridge. This marks the first preparation of a metallo-β-lactamase selectively substituted with a paramagnetic metal ion, Co(II), either in the Zn1 (CoCd-NDM-1) or in the Zn2 site (ZnCo-NDM-1), as well as both (CoCo-NDM-1). We then used these metal-substituted forms of the enzyme to probe the reaction mechanism, using steady-state and stopped-flow kinetics, stopped-flow fluorescence, and rapid-freeze-quench EPR. Both metal sites show significant effects on the kinetic constants, and both paramagnetic variants (CoCd- and ZnCo-NDM-1) showed significant structural changes on reaction with substrate. These changes are discussed in terms of a minimal kinetic mechanism that incorporates all of the data

    Demonstration of the temporal matter-wave Talbot effect for trapped matter waves

    Get PDF
    We demonstrate the temporal Talbot effect for trapped matter waves using ultracold atoms in an optical lattice. We investigate the phase evolution of an array of essentially non-interacting matter waves and observe matter-wave collapse and revival in the form of a Talbot interference pattern. By using long expansion times, we image momentum space with sub-recoil resolution, allowing us to observe fractional Talbot fringes up to 10th order.Comment: 17 pages, 7 figure

    Pion, kaon, proton and anti-proton transverse momentum distributions from p+p and d+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Full text link
    Identified mid-rapidity particle spectra of π±\pi^{\pm}, K±K^{\pm}, and p(pˉ)p(\bar{p}) from 200 GeV p+p and d+Au collisions are reported. A time-of-flight detector based on multi-gap resistive plate chamber technology is used for particle identification. The particle-species dependence of the Cronin effect is observed to be significantly smaller than that at lower energies. The ratio of the nuclear modification factor (RdAuR_{dAu}) between protons (p+pˉ)(p+\bar{p}) and charged hadrons (hh) in the transverse momentum range 1.2<pT<3.01.2<{p_{T}}<3.0 GeV/c is measured to be 1.19±0.051.19\pm0.05(stat)±0.03\pm0.03(syst) in minimum-bias collisions and shows little centrality dependence. The yield ratio of (p+pˉ)/h(p+\bar{p})/h in minimum-bias d+Au collisions is found to be a factor of 2 lower than that in Au+Au collisions, indicating that the Cronin effect alone is not enough to account for the relative baryon enhancement observed in heavy ion collisions at RHIC.Comment: 6 pages, 4 figures, 1 table. We extended the pion spectra from transverse momentum 1.8 GeV/c to 3. GeV/

    Mutation spectrum of 122 hemophilia A families from Taiwanese population by LD-PCR, DHPLC, multiplex PCR and evaluating the clinical application of HRM

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hemophilia A represents the most common and severe inherited hemorrhagic disorder. It is caused by mutations in the F8 gene, which leads to a deficiency or dysfunctional factor VIII protein, an essential cofactor in the factor X activation complex.</p> <p>Methods</p> <p>We used long-distance polymerase chain reaction and denaturing high performance liquid chromatography for mutation scanning of the F8 gene. We designed the competitive multiplex PCR to identify the carrier with exonal deletions. In order to facilitate throughput and minimize the cost of mutation scanning, we also evaluated a new mutation scanning technique, high resolution melting analysis (HRM), as an alternative screening method.</p> <p>Results</p> <p>We presented the results of detailed screening of 122 Taiwanese families with hemophilia A and reported twenty-nine novel mutations. There was one family identified with whole exons deletion, and the carriers were successfully recognized by multiplex PCR. By HRM, the different melting curve patterns were easily identified in 25 out of 28 cases (89%) and 15 out of 15 (100%) carriers. The sensitivity was 93 % (40/43). The overall mutation detection rate of hemophilia A was 100% in this study.</p> <p>Conclusion</p> <p>We proposed a diagnostic strategy for hemophilia A genetic diagnosis. We consider HRM as a powerful screening tool that would provide us with a more cost-effective protocol for hemophilia A mutation identification.</p

    The E-ELT first light spectrograph HARMONI: capabilities and modes

    Get PDF
    Trabajo presentado en SPIE Astronomical Telescopes, celebrado en San Diego (California), del 26 de junio al 1 de julio de 2016HARMONI is the E-ELT's first light visible and near-infrared integral field spectrograph. It will provide four different spatial scales, ranging from coarse spaxels of 60 × 30 mas best suited for seeing limited observations, to 4 mas spaxels that Nyquist sample the diffraction limited point spread function of the E-ELT at near-infrared wavelengths. Each spaxel scale may be combined with eleven spectral settings, that provide a range of spectral resolving powers (R 3500, 7500 and 20000) and instantaneous wavelength coverage spanning the 0.5 - 2.4 ¿m wavelength range of the instrument. In autumn 2015, the HARMONI project started the Preliminary Design Phase, following signature of the contract to design, build, test and commission the instrument, signed between the European Southern Observatory and the UK Science and Technology Facilities Council. Crucially, the contract also includes the preliminary design of the HARMONI Laser Tomographic Adaptive Optics system. The instrument's technical specifications were finalized in the period leading up to contract signature. In this paper, we report on the first activity carried out during preliminary design, defining the baseline architecture for the system, and the trade-off studies leading up to the choice of baseline

    Planck 2015 results. XVI. Isotropy and statistics of the CMB

    Get PDF
    We test the statistical isotropy and Gaussianity of the cosmic microwave background (CMB) anisotropies using observations made by the Planck satellite. Our results are based mainly on the full Planck mission for temperature, but also include some polarization measurements. In particular, we consider the CMB anisotropy maps derived from the multi-frequency Planck data by several component-separation methods. For the temperature anisotropies, we find excellent agreement between results based on these sky maps over both a very large fraction of the sky and a broad range of angular scales, establishing that potential foreground residuals do not affect our studies. Tests of skewness, kurtosis, multi-normality, N-point functions, and Minkowski functionals indicate consistency with Gaussianity, while a power deficit at large angular scales is manifested in several ways, for example low map variance. The results of a peak statistics analysis are consistent with the expectations of a Gaussian random field. The “Cold Spot” is detected with several methods, including map kurtosis, peak statistics, and mean temperature profile. We thoroughly probe the large-scale dipolar power asymmetry, detecting it with several independent tests, and address the subject of a posteriori correction. Tests of directionality suggest the presence of angular clustering from large to small scales, but at a significance that is dependent on the details of the approach. We perform the first examination of polarization data, finding the morphology of stacked peaks to be consistent with the expectations of statistically isotropic simulations. Where they overlap, these results are consistent with the Planck 2013 analysis based on the nominal mission data and provide our most thorough view of the statistics of the CMB fluctuations to date

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF
    corecore