21 research outputs found

    Western-style diet does not negatively affect the healthy aging benefits of lifelong restrictive feeding

    Get PDF
    BACKGROUND: Lifelong consumption of a Western-style diet is a risk factor for developing metabolic disorders and therefore impairs healthy aging. Dietary restriction (DR) could delay the onset of age-related diseases and prolong life span, however, the extent to which this depends on diet type is poorly understood. OBJECTIVE: To study whether feeding a Western-style diet affects the healthy aging benefits of DR. METHODS: Mice fed a Western-style diet (ad libitum and DR) were compared to those fed a standard healthy diet (ad libitum and DR). Survival and several metabolic and endocrine parameters were analyzed. RESULTS: Lifelong consumption of a Western-style diet resulted in increased adiposity, elevated triglyceride levels in plasma, higher homeostatic model assessment-insulin resistance and higher resting metabolic rate in mice compared to the standard diet group. This was accompanied by reduced survival in the Western-style diet group. DR irrespective of diet type improved abovementioned parameters. CONCLUSIONS: Lifelong restricted consumption of Western-style diet led to improved metabolic and endocrine parameters, and increased survival compared to the ad libitum Western-style diet group. Interestingly, the survival was comparable in restricted Western-style and standard diet groups, suggesting that reduced food intake rather than diet composition play more important role in promoting longevity/survival

    Whole-body vibration partially reverses aging-induced increases in visceral adiposity and hepatic lipid storage in mice

    Get PDF
    At old age, humans generally have declining muscle mass and increased fat deposition, which can increase the risk of developing cardiometabolic diseases. While regular physical activity postpones these age-related derangements, this is not always possible in the elderly because of disabilities or risk of injury. Whole-body vibration (WBV) training may be considered as an alternative to physical activity particularly in the frail population. To explore this possibility, we characterized whole-body and organ-specific metabolic processes in 6-month and 25-month old mice, over a period of 14 weeks of WBV versus sham training. WBV training tended to increase blood glucose turnover rates and stimulated hepatic glycogen utilization during fasting irrespective of age. WBV was effective in reducing white fat mass and hepatic triglyceride content only in old but not in young mice and these reductions were related to upregulation of hepatic mitochondrial uncoupling of metabolism (assessed by high-resolution respirometry) and increased expression of uncoupling protein 2. Because these changes occurred independent of changes in food intake and whole-body metabolic rate (assessed by indirect calorimetry), the liver-specific effects of WBV may be a primary mechanism to improve metabolic health during aging, rather than that it is a consequence of alterations in energy balance

    Low-Fat Diet With Caloric Restriction Reduces White Matter Microglia Activation During Aging

    Get PDF
    Rodent models of both aging and obesity are characterized by inflammation in specific brain regions, notably the corpus callosum, fornix, and hypothalamus. Microglia, the resident macrophages of the central nervous system, are important for brain development, neural support, and homeostasis. However, the effects of diet and lifestyle on microglia during aging are only partly understood. Here, we report alterations in microglia phenotype and functions in different brain regions of mice on a high-fat diet (HFD) or low-fat diet (LFD) during aging and in response to voluntary running wheel exercise. We compared the expression levels of genes involved in immune response, phagocytosis, and metabolism in the hypothalamus of 6-month-old HFD and LFD mice. We also compared the immune response of microglia from HFD or LFD mice to peripheral inflammation induced by intraperitoneal injection of lipopolysaccharide (LPS). Finally, we investigated the effect of diet, physical exercise, and caloric restriction (40% reduction compared to ad libitum intake) on microglia in 24-month-old HFD and LFD mice. Changes in diet caused morphological changes in microglia, but did not change the microglia response to LPS-induced systemic inflammation. Expression of phagocytic markers (i.e., Mac-2/Lgals3, Dectin-1/Clec7a, and CD16/CD32) in the white matter microglia of 24-month-old brain was markedly decreased in calorically restricted LFD mice. In conclusion, LFD resulted in reduced activation of microglia, which might be an underlying mechanism for the protective role of caloric restriction during aging-associated decline

    Integrative neurobiology of metabolic diseases, neuroinflammation, and neurodegeneration

    Get PDF
    Alzheimer’s disease (AD) is a complex, multifactorial disease with a number of leading mechanisms, including neuroinflammation, processing of amyloid precursor protein (APP) to amyloid β peptide, tau protein hyperphosphorylation, relocalization and deposition. These mechanisms are propagated by obesity, the metabolic syndrome and type-2 diabetes mellitus. Stress, sedentariness, dietary overconsumption of saturated fat and refined sugars, and circadian derangements/disturbed sleep contribute to obesity and related metabolic diseases, but also accelerate age-related damage and senescence that all feed the risk of developing AD too. The complex and interacting mechanisms are not yet completely understood and will require further analysis. Instead of investigating AD as a mono- or oligocausal disease we should address the disease by understanding the multiple underlying mechanisms and how these interact. Future research therefore might concentrate on integrating these by systems biology approaches, but also to regard them from an evolutionary medicine point of view. The current review addresses several of these interacting mechanisms in animal models and compares them with clinical data giving an overview about our current knowledge and puts them into an integrated framework

    Low-Fat Diet With Caloric Restriction Reduces White Matter Microglia Activation During Aging

    No full text
    Rodent models of both aging and obesity are characterized by inflammation in specific brain regions, notably the corpus callosum, fornix, and hypothalamus. Microglia, the resident macrophages of the central nervous system, are important for brain development, neural support, and homeostasis. However, the effects of diet and lifestyle on microglia during aging are only partly understood. Here, we report alterations in microglia phenotype and functions in different brain regions of mice on a high-fat diet (HFD) or low-fat diet (LFD) during aging and in response to voluntary running wheel exercise. We compared the expression levels of genes involved in immune response, phagocytosis, and metabolism in the hypothalamus of 6-month-old HFD and LFD mice. We also compared the immune response of microglia from HFD or LFD mice to peripheral inflammation induced by intraperitoneal injection of lipopolysaccharide (LPS). Finally, we investigated the effect of diet, physical exercise, and caloric restriction (40% reduction compared to ad libitum intake) on microglia in 24-month-old HFD and LFD mice. Changes in diet caused morphological changes in microglia, but did not change the microglia response to LPS-induced systemic inflammation. Expression of phagocytic markers (i.e., Mac-2/Lgals3, Dectin-1/Clec7a, and CD16/CD32) in the white matter microglia of 24-month-old brain was markedly decreased in calorically restricted LFD mice. In conclusion, LFD resulted in reduced activation of microglia, which might be an underlying mechanism for the protective role of caloric restriction during aging-associated decline

    Lifelong dietary intervention does not affect hematopoietic stem cell function

    Get PDF
    Hematopoietic stem cells (HSCs) undergo a profound functional decline during normal aging. Because caloric or dietary restriction has been shown to delay multiple aspects of the aging process in many species, we explored the consequences of lifelong caloric restriction, or conversely, lifelong excess caloric intake, on HSC numbers and function. Although caloric restriction prevented age-dependent increases in bone marrow cellularity, caloric restriction was not able to prevent functional decline of aged, long-term HSC functioning. A lifelong high-fat diet also did not affect HSC function. We conclude that lifelong caloric interventions fail to prevent or induce loss of age-associated HSC functioning. Copyright (C) 2017 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc

    Running wheel access fails to resolve impaired sustainable health in mice feeding a high fat sucrose diet

    Get PDF
    Diet and physical activity are thought to affect sustainable metabolic health and survival. To improve understanding, we studied survival of mice feeding a low-fat (LF) or high-saturated fat/high sugar (HFS) diet, each with or without free running wheel (RW) access. Additionally several endocrine and metabolic health indices were assessed at 6, 12, 18 and 24 months of age. As expected, HFS feeding left-shifted survival curve of mice compared to LF feeding, and this was associated with increased energy intake and increased (visceral/total) adiposity, liver triglycerides, and increased plasma cholesterol, corticosterone, HOMA-IR, and lowered adiponectin levels. Several of these health parameters improved (transiently) by RW access in HFS and LF fed mice (i.e., HOMA-IR, plasma corticosterone), others however deteriorated (transiently) by RW access only in HFS-fed mice (i.e., body adiposity, plasma resistin, and free cholesterol levels). Apart from these multiple and sometimes diverging health effects of RW access, RW access did not affect survival curves. Important to note, voluntary RW activity declined with age, but this effect was most pronounced in the HFS fed mice. These results thus challenge the hypothesis that voluntary wheel running can counteract HFS-induced deterioration of survival and metabolic health

    Running wheel access fails to resolve impaired sustainable health in mice feeding a high fat sucrose diet

    Get PDF
    Diet and physical activity are thought to affect sustainable metabolic health and survival. To improve understanding, we studied survival of mice feeding a low-fat (LF) or high-saturated fat/high sugar (HFS) diet, each with or without free running wheel (RW) access. Additionally several endocrine and metabolic health indices were assessed at 6, 12, 18 and 24 months of age. As expected, HFS feeding left-shifted survival curve of mice compared to LF feeding, and this was associated with increased energy intake and increased (visceral/total) adiposity, liver triglycerides, and increased plasma cholesterol, corticosterone, HOMA-IR, and lowered adiponectin levels. Several of these health parameters improved (transiently) by RW access in HFS and LF fed mice (i.e., HOMA-IR, plasma corticosterone), others however deteriorated (transiently) by RW access only in HFS-fed mice (i.e., body adiposity, plasma resistin, and free cholesterol levels). Apart from these multiple and sometimes diverging health effects of RW access, RW access did not affect survival curves. Important to note, voluntary RW activity declined with age, but this effect was most pronounced in the HFS fed mice. These results thus challenge the hypothesis that voluntary wheel running can counteract HFS-induced deterioration of survival and metabolic health

    Western-style diet does not negatively affect the healthy aging benefits of lifelong restrictive feeding

    No full text
    BACKGROUND: Lifelong consumption of a Western-style diet is a risk factor for developing metabolic disorders and therefore impairs healthy aging. Dietary restriction (DR) could delay the onset of age-related diseases and prolong life span, however, the extent to which this depends on diet type is poorly understood. OBJECTIVE: To study whether feeding a Western-style diet affects the healthy aging benefits of DR. METHODS: Mice fed a Western-style diet (ad libitum and DR) were compared to those fed a standard healthy diet (ad libitum and DR). Survival and several metabolic and endocrine parameters were analyzed. RESULTS: Lifelong consumption of a Western-style diet resulted in increased adiposity, elevated triglyceride levels in plasma, higher homeostatic model assessment-insulin resistance and higher resting metabolic rate in mice compared to the standard diet group. This was accompanied by reduced survival in the Western-style diet group. DR irrespective of diet type improved abovementioned parameters. CONCLUSIONS: Lifelong restricted consumption of Western-style diet led to improved metabolic and endocrine parameters, and increased survival compared to the ad libitum Western-style diet group. Interestingly, the survival was comparable in restricted Western-style and standard diet groups, suggesting that reduced food intake rather than diet composition play more important role in promoting longevity/survival

    Age and Diet Modulate the Insulin-Sensitizing Effects of Exercise:A Tracer-Based Oral Glucose Tolerance Test

    Get PDF
    Diet modulates the development of insulin resistance during aging. This includes tissue-specific alterations in insulin signaling and mitochondrial function, which ultimately affect glucose homeostasis. Exercise stimulates glucose clearance, mitochondrial lipid oxidation and enhances insulin sensitivity. It is not well known how exercise interacts with age and diet in the development of insulin resistance. To investigate this, oral glucose tolerance tests (OGTT) with a tracer were conducted in mice ranging from 4 to 21 months of age, fed a low- (LFD) or high-fat diet (HFD), with or without life-long voluntary access to a running wheel (RW). We developed a computational model to derive glucose fluxes, which were commensurate with independent values from steady-state tracer infusions. Both insulin sensitivity indices derived for peripheral tissues and liver (IS-P and IS-L, respectively) were steeply decreased by aging and a HFD. This preceded the age-dependent decline in the mitochondrial capacity to oxidize lipids. In LFD young animals, RW access enhanced the IS-P concomitantly with the muscle β- oxidation capacity. Surprisingly, RW access completely prevented the age-dependent IS-L decrease, but only in LFD animals. This study indicates, therefore, that endurance exercise can improve the age-dependent decline in organ-specific IS mostly in the context of a healthy diet.</p
    corecore