370 research outputs found

    Covalent attachment of fibronectin onto emulsion‐templated porous polymer scaffolds enhances human endometrial stromal cell adhesion, infiltration, and function

    Get PDF
    A novel strategy for the surface functionalization of emulsion‐templated highly porous (polyHIPE) materials as well as its application to in vitro 3D cell culture is presented. A heterobifunctional linker that consists of an amine‐reactive N‐hydroxysuccinimide ester and a photoactivatable nitrophenyl azide, N‐sulfosuccinimidyl‐6‐(4â€Č‐azido‐2â€Č‐nitrophenylamino)hexanoate (sulfo‐SANPAH), is utilized to functionalize polyHIPE surfaces. The ability to conjugate a range of compounds (6‐aminofluorescein, heptafluorobutylamine, poly(ethylene glycol) bis‐amine, and fibronectin) to the polyHIPE surface is demonstrated using fluorescence imaging, FTIR spectroscopy, and X‐ray photoelectron spectroscopy. Compared to other existing surface functionalization methods for polyHIPE materials, this approach is facile, efficient, versatile, and benign. It can also be used to attach biomolecules to polyHIPE surfaces including cell adhesion‐promoting extracellular matrix proteins. Cell culture experiments demonstrated that the fibronectin‐conjugated polyHIPE scaffolds improve the adhesion and function of primary human endometrial stromal cells. It is believed that this approach can be employed to produce the next generation of polyHIPE scaffolds with tailored surface functionality, enhancing their application in 3D cell culture and tissue engineering whilst broadening the scope of applications to a wider range of cell types

    Modelling the impact of decidual senescence on embryo implantation in human endometrial assembloids.

    Get PDF
    Decidual remodelling of midluteal endometrium leads to a short implantation window after which the uterine mucosa either breaks down or is transformed into a robust matrix that accommodates the placenta throughout pregnancy. To gain insights into the underlying mechanisms, we established and characterized endometrial assembloids, consisting of gland-like organoids and primary stromal cells. Single-cell transcriptomics revealed that decidualized assembloids closely resemble midluteal endometrium, harbouring differentiated and senescent subpopulations in both glands and stroma. We show that acute senescence in glandular epithelium drives secretion of multiple canonical implantation factors, whereas in the stroma it calibrates the emergence of anti-inflammatory decidual cells and pro-inflammatory senescent decidual cells. Pharmacological inhibition of stress responses in pre-decidual cells accelerated decidualization by eliminating the emergence of senescent decidual cells. In co-culture experiments, accelerated decidualization resulted in entrapment of collapsed human blastocysts in a robust, static decidual matrix. By contrast, the presence of senescent decidual cells created a dynamic implantation environment, enabling embryo expansion and attachment, although their persistence led to gradual disintegration of assembloids. Our findings suggest that decidual senescence controls endometrial fate decisions at implantation and highlight how endometrial assembloids may accelerate the discovery of new treatments to prevent reproductive failure

    The JCMT Gould Belt Survey: Evidence for radiative heating in Serpens MWC 297 and its influence on local star formation

    Get PDF
    We present SCUBA-2 450micron and 850micron observations of the Serpens MWC 297 region, part of the JCMT Gould Belt Survey of nearby star-forming regions. Simulations suggest that radiative feedback influences the star-formation process and we investigate observational evidence for this by constructing temperature maps. Maps are derived from the ratio of SCUBA-2 fluxes and a two component model of the JCMT beam for a fixed dust opacity spectral index of beta = 1.8. Within 40 of the B1.5Ve Herbig star MWC 297, the submillimetre fluxes are contaminated by free-free emission with a spectral index of 1.03+-0.02, consistent with an ultra-compact HII region and polar winds/jets. Contamination accounts for 73+-5 per cent and 82+-4 per cent of peak flux at 450micron and 850micron respectively. The residual thermal disk of the star is almost undetectable at these wavelengths. Young Stellar Objects are confirmed where SCUBA-2 850micron clumps identified by the fellwalker algorithm coincide with Spitzer Gould Belt Survey detections. We identify 23 objects and use Tbol to classify nine YSOs with masses 0.09 to 5.1 Msun. We find two Class 0, one Class 0/I, three Class I and three Class II sources. The mean temperature is 15+-2K for the nine YSOs and 32+-4K for the 14 starless clumps. We observe a starless clump with an abnormally high mean temperature of 46+-2K and conclude that it is radiatively heated by the star MWC 297. Jeans stability provides evidence that radiative heating by the star MWC 297 may be suppressing clump collapse.Comment: 24 pages, 13 figures, 7 table

    Classifying organisms and artefacts by their outline shapes

    Get PDF
    We often wish to classify objects by their shapes. Indeed, the study of shapes is an important part of many scientific fields, such as evolutionary biology, structural biology, image processing and archaeology. However, mathematical shape spaces are rather complicated and nonlinear. The most widely used methods of shape analysis, geometric morphometrics, treat the shapes as sets of points. Diffeomorphic methods consider the underlying curve rather than points, but have rarely been applied to real-world problems. Using a machine classifier, we tested the ability of several of these methods to describe and classify the shapes of a variety of organic and man-made objects. We find that one method, based on square-root velocity functions (SRVFs), outperforms all others, including a standard geometric morphometric method (eigenshapes), and that it is also superior to human experts using shape alone. When the SRVF approach is constrained to take account of homologous landmarks it can accurately classify objects of very different shapes. The SRVF method identifies a shortest path between shapes, and we show that this can be used to estimate the shapes of intermediate steps in evolutionary series. Diffeomorphic shape analysis methods, we conclude, now provide practical and effective solutions to many shape description and classification problems in the natural and human sciences.</p

    High-throughput sequencing of the paired human immunoglobulin heavy and light chain repertoire.

    Get PDF
    Each B-cell receptor consists of a pair of heavy and light chains. High-throughput sequencing can identify large numbers of heavy- and light-chain variable regions (VH and VL) in a given B-cell repertoire, but information about endogenous pairing of heavy and light chains is lost after bulk lysis of B-cell populations. Here we describe a way to retain this pairing information. In our approach, single B cells (>5 × 104 capacity per experiment) are deposited in a high-density microwell plate (125 pl/well) and lysed in situ. mRNA is then captured on magnetic beads, reverse transcribed and amplified by emulsion VH:VL linkage PCR. The linked transcripts are analyzed by Illumina high-throughput sequencing. We validated the fidelity of VH:VL pairs identified by this approach and used the method to sequence the repertoire of three human cell subsets-peripheral blood IgG+ B cells, peripheral plasmablasts isolated after tetanus toxoid immunization and memory B cells isolated after seasonal influenza vaccinatio

    The JCMT Gould Belt Survey: A First Look at the Auriga–California Molecular Cloud with SCUBA-2

    Get PDF
    We present 850 and 450 ÎŒm observations of the dense regions within the Auriga–California molecular cloud using SCUBA-2 as part of the JCMT Gould Belt Legacy Survey to identify candidate protostellar objects, measure the masses of their circumstellar material (disk and envelope), and compare the star formation to that in the Orion A molecular cloud. We identify 59 candidate protostars based on the presence of compact submillimeter emission, complementing these observations with existing Herschel/SPIRE maps. Of our candidate protostars, 24 are associated with young stellar objects (YSOs) in the Spitzer and Herschel/PACS catalogs of 166 and 60 YSOs, respectively (177 unique), confirming their protostellar nature. The remaining 35 candidate protostars are in regions, particularly around LkHα 101, where the background cloud emission is too bright to verify or rule out the presence of the compact 70 ÎŒm emission that is expected for a protostellar source. We keep these candidate protostars in our sample but note that they may indeed be prestellar in nature. Our observations are sensitive to the high end of the mass distribution in Auriga–Cal. We find that the disparity between the richness of infrared star-forming objects in Orion A and the sparsity in Auriga–Cal extends to the submillimeter, suggesting that the relative star formation rates have not varied over the Class II lifetime and that Auriga–Cal will maintain a lower star formation efficiency

    Future therapeutic targets in rheumatoid arthritis?

    Get PDF
    Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by persistent joint inflammation. Without adequate treatment, patients with RA will develop joint deformity and progressive functional impairment. With the implementation of treat-to-target strategies and availability of biologic therapies, the outcomes for patients with RA have significantly improved. However, the unmet need in the treatment of RA remains high as some patients do not respond sufficiently to the currently available agents, remission is not always achieved and refractory disease is not uncommon. With better understanding of the pathophysiology of RA, new therapeutic approaches are emerging. Apart from more selective Janus kinase inhibition, there is a great interest in the granulocyte macrophage-colony stimulating factor pathway, Bruton's tyrosine kinase pathway, phosphoinositide-3-kinase pathway, neural stimulation and dendritic cell-based therapeutics. In this review, we will discuss the therapeutic potential of these novel approaches

    Exceptional AGN-driven turbulence inhibits star formation in the 3C 326N radio galaxy

    Get PDF
    We detect bright [CII]158ÎŒm line emission from the radio galaxy 3C 326N at z=0.09, which shows weak star formation (SFR⊙~yr−1) despite having strong H2 line emission and 2×109M⊙ of molecular gas. The [CII] line is twice as strong as the 0-0S(1) 17ÎŒm H2 line, and both lines are much in excess what is expected from UV heating. We combine infrared Spitzer and Herschel data with gas and dust modeling to infer the gas physical conditions. The [CII] line traces 30 to 50% of the molecular gas mass, which is warm (70−3. The [CII] line is broad with a blue-shifted wing, and likely to be shaped by a combination of rotation, outflowing gas, and turbulence. It matches the near-infrared H2 and the Na D optical absorption lines. If the wing is interpreted as an outflow, the mass loss rate would be larger than 20M⊙/yr, and the depletion timescale shorter than the orbital timescale (108yr). These outflow rates may be over-estimated because the stochastic injection of turbulence on galactic scales can contribute to the skewness of the line profile and mimic outflowing gas. We argue that the dissipation of turbulence is the main heating process of this gas. Cosmic rays can also contribute to the heating but they require an average gas density larger than the observational constraints. We show that strong turbulent support maintains a high gas vertical scale height (0.3-4kpc) in the disk and can inhibit the formation of gravitationally-bound structures at all scales, offering a natural explanation for the weakness of star formation in 3C 326N. To conclude, the bright [CII] line indicates that strong AGN jet-driven turbulence may play a key role in enhancing the amount of molecular gas (positive feedback) but yet can prevent star formation on galactic scales (negative feedback)

    GPS-CCD: A Novel Computational Program for the Prediction of Calpain Cleavage Sites

    Get PDF
    As one of the most essential post-translational modifications (PTMs) of proteins, proteolysis, especially calpain-mediated cleavage, plays an important role in many biological processes, including cell death/apoptosis, cytoskeletal remodeling, and the cell cycle. Experimental identification of calpain targets with bona fide cleavage sites is fundamental for dissecting the molecular mechanisms and biological roles of calpain cleavage. In contrast to time-consuming and labor-intensive experimental approaches, computational prediction of calpain cleavage sites might more cheaply and readily provide useful information for further experimental investigation. In this work, we constructed a novel software package of GPS-CCD (Calpain Cleavage Detector) for the prediction of calpain cleavage sites, with an accuracy of 89.98%, sensitivity of 60.87% and specificity of 90.07%. With this software, we annotated potential calpain cleavage sites for hundreds of calpain substrates, for which the exact cleavage sites had not been previously determined. In this regard, GPS-CCD 1.0 is considered to be a useful tool for experimentalists. The online service and local packages of GPS-CCD 1.0 were implemented in JAVA and are freely available at: http://ccd.biocuckoo.org/
    • 

    corecore