21 research outputs found

    Disruption of T cell tolerance to self-immunoglobulin causes polyclonal B cell stimulation followed by inactivation of responding autoreactive T cells

    Get PDF
    Scavenger receptor (SR)-specific delivery by maleylation of a ubiquitous self-protein, Ig, to SR-bearing APCs results in self-limiting induction of autoimmune effects in vivo. Immunization with maleyl-Ig breaks T cell tolerance to self-Ig and causes hypergammaglobulinemia, with increases in spleen weight and cellularity. The majority of splenic B cells show an activated phenotype upon maleyl-Ig immunization, leading to large-scale conversion to a CD138+ phenotype and to significant increases in CD138-expressing splenic plasma cells. The polyclonal B cell activation, hypergammaglobulinemia, and autoreactive Ig-specific T cell responses decline over a 2-mo period postimmunization. Following adoptive transfer, T cells from maleyl-Ig-immune mice taken at 2 wk postimmunization can induce hypergammaglobulinemia in the recipients, but those taken at 10 wk postimmunization cannot. Hypergammaglobulinemia in the adoptive transfer recipients is also transient and is followed by an inability to respond to fresh maleyl-Ig immunization, suggesting that the autoreactive Ig-specific T cells are inactivated peripherally following disruption of tolerance. Thus, although autoreactive T cell responses to a ubiquitous self-Ag, Ig, are induced by SR-mediated delivery to professional APCs in vivo resulting in autoimmune pathophysiological effects, they are effectively and rapidly turned off by inactivation of these activated Ig-specific T cells in vivo

    MHC class I-restricted presentation of maleylated protein binding to scavenger receptors

    Get PDF
    Pathways for loading exogenous protein-derived peptides on MHC class I are thought to be present mainly in monocyte-lineage cells and to involve phagocytosis- or macropinocytosis-mediated antigenic leakage into either cytosol or extracellular milieu to give peptide access to MHC class I. We show that maleylation of OVA enhanced its presentation to an OVA-specific MHC class I-restricted T cell line by both macrophages and B cells. This enhanced presentation involved uptake through receptors of scavenger receptor (SR)-like ligand specificity, was TAP-1-independent, and was inhibited by low levels (2 mM) of ammonium chloride. No peptide loading of bystander APCs by maleylated (maleyl) OVA-pulsed macrophages was detected. Demaleylated maleyl-OVA showed enhanced MHC class I-restricted presentation through receptor-mediated uptake and remained highly sensitive to 2 mM ammonium chloride. However, if receptor binding of maleyl-OVA was inhibited by maleylated BSA, the residual presentation was relatively resistant to 2 mM ammonium chloride. Maleyl-OVA directly introduced into the cytosol via osmotic lysis of pinosomes was poorly presented, confirming that receptor-mediated presentation of exogenous maleyl-OVA was unlikely to involve a cytosolic pathway. Demaleylated maleyl-OVA was well presented as a cytosolic Ag, consistent with the dependence of cytosolic processing on protein ubiquitination. Thus, receptor-specific delivery of exogenous protein Ags to APCs can result in enhanced MHC class I-restricted presentation, suggesting that the exogenous pathway of peptide loading for MHC class I may be a constitutive property dependent mainly on the quantity of Ag taken up by APCs

    Modulation of T cell cytokine profiles and peptide-MHC complex availability in vivo by delivery to scavenger receptors via antigen maleylation

    Get PDF
    We have previously shown that conversion of proteins to scavenger receptor (SR) ligands by maleylation increases their immunogenicity. We now show that maleyl-Ag-immune spleen cells make relatively more IFN-ϒ and less IL-4 or IL-10 than native Ag-immune cells. This is also reflected in the IgG1:IgG2a ratios in Abs generated in vivo. SR engagement on macrophages does not alter their surface levels of the adhesive/costimulatory molecules CD11a/CD18, CD11b/CD18, CD24, CD54, or CD40, nor does it enhance their ability to support anti-CD3-driven proliferation of naive T cells in vitro. Costimulatory molecules implicated in differential Th1/Th2 commitment-CD80, CD86, and IL-12-are not inducible by SR ligation. In addition to macrophages and dendritic cells, B cells also show receptor-mediated uptake and enhanced presentation of maleyl-Ags. Using a monoclonal T cell line to detect peptide-MHC complexes expressed on spleen cells in Ag-injected mice, we find that higher levels of these complexes are generated in vivo from maleyl-proteins and they persist longer than those generated from the native protein. Together, these data suggest that in certain situations, the levels of cognate ligand available and/or the time course of their availability may play a major role in determining the cytokine profiles of the responding T cells in addition to the costimulatory signals implicated so far

    miR-132-3p and KLF7 as novel regulators of aortic stiffening-associated EndMT in type 2 diabetes mellitus

    Get PDF
    Background: The prevalence of diabetes mellitus has risen considerably and currently affects more than 422 million people worldwide. Cardiovascular diseases including myocardial infarction and heart failure represent the major cause of death in type 2 diabetes (T2D). Diabetes patients exhibit accelerated aortic stiffening which is an independent predictor of cardiovascular disease and mortality. We recently showed that aortic stiffness precedes hypertension in a mouse model of diabetes (db/db mice), making aortic stiffness an early contributor to cardiovascular disease development. Elucidating how aortic stiffening develops is a pressing need in order to halt the pathophysiological process at an early time point. Methods: To assess EndMT occurrence, we performed co-immunofluorescence staining of an endothelial marker (CD31) with mesenchymal markers (α-SMA/S100A4) in aortic sections from db/db mice. Moreover, we performed qRT-PCR to analyze mRNA expression of EndMT transcription factors in aortic sections of db/db mice and diabetic patients. To identify the underlying mechanism by which EndMT contributes to aortic stiffening, we used aortas from db/db mice and diabetic patients in combination with high glucose-treated human umbilical vein endothelial cells (HUVECs) as an in vitro model of diabetes-associated EndMT. Results: We demonstrate robust CD31/α-SMA and CD31/S100A4 co-localization in aortic sections of db/db mice which was almost absent in control mice. Moreover, we demonstrate a significant upregulation of EndMT transcription factors in aortic sections of db/db mice and diabetic patients. As underlying regulator, we identified miR-132-3p as the most significantly downregulated miR in the micronome of db/db mice and high glucose-treated HUVECs. Indeed, miR-132-3p was also significantly downregulated in aortic tissue from diabetic patients. We identified Kruppel-like factor 7 (KLF7) as a target of miR-132-3p and show a significant upregulation of KLF7 in aortic sections of db/db mice and diabetic patients as well as in high glucose-treated HUVECs. We further demonstrate that miR-132-3p overexpression and KLF7 downregulation ameliorates EndMT in high glucose-treated HUVECs. Conclusions: We demonstrate for the first time that EndMT contributes to aortic stiffening in T2D. We identified miR-132-3p and KLF7 as novel EndMT regulators in this context. Altogether, this gives us new insights in the development of aortic stiffening in T2D.</p

    3, 3′5 Triiodo L Thyronine Induces Apoptosis in Human Breast Cancer MCF-7cells, Repressing SMP30 Expression through Negative Thyroid Response Elements

    Get PDF
    Thyroid hormones regulate cell proliferation, differentiation as well as apoptosis. However molecular mechanism underlying apoptosis as a result of thyroid hormone signaling is poorly understood. The antiapoptotic role of Senescence Marker Protein-30 (SMP30) has been characterized in response to varieties of stimuli as well as in knock out model. Our earlier data suggest that thyroid hormone 3, 3'5 Triiodo L Thyronine (T(3)), represses SMP30 in rat liver.In highly metastatic MCF-7, human breast cancer cell line T3 treatment repressed SMP30 expression leading to enhanced apoptosis. Analysis by flow cytometry and other techniques revealed that overexpression and silencing of SMP30 in MCF-7 resulted in decelerated and accelerated apoptosis respectively. In order to identify the cis-acting elements involved in this regulation, we have analyzed hormone responsiveness of transiently transfected hSMP30 promoter deletion reporter vectors in MCF-7 cells. As opposed to the expected epigenetic outcome, thyroid hormone down regulated hSMP30 promoter activity despite enhanced recruitment of acetylated H3 on thyroid response elements (TREs). From the stand point of established epigenetic concept we have categorised these two TREs as negative response elements. Our attempt of siRNA mediated silencing of TRβ, reduced the fold of repression of SMP30 gene expression. In presence of thyroid hormone, Trichostatin- A (TSA), which is a Histone deacetylase (HDAC) inhibitor further inhibited SMP30 promoter activity. The above findings are in support of categorisation of both the thyroid response element as negative response elements as usually TSA should have reversed the repressions.This is the first report of novel mechanistic insights into the remarkable downregulation of SMP30 gene expression by thyroid hormone which in turn induces apoptosis in MCF-7 human breast cancer cells. We believe that our study represents a good ground for future effort to develop new therapeutic approaches to challenge the progression of breast cancer

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    Causal Connections From Chronic Kidney Disease to Cardiac Fibrosis

    Get PDF
    Cardiovascular disease and heart failure are the primary cause of morbidity and mortality in patients with chronic kidney disease. Because impairment of kidney function correlates with heart failure and cardiac fibrosis, a kidney-heart axis is suspected. Although our understanding of the underlying mechanisms still is evolving, the possibility that kidney-heart messengers could be intercepted offers ample reason to focus on this clinically highly relevant problem. Here, we review the current knowledge of how kidney injury causes heart failure and fibrosis
    corecore