9 research outputs found

    Rac1 GTPase-deficient mouse lens exhibits defects in shape, suture formation, fiber cell migration and survival

    Get PDF
    AbstractMorphogenesis and shape of the ocular lens depend on epithelial cell elongation and differentiation into fiber cells, followed by the symmetric and compact organization of fiber cells within an enclosed extracellular matrix-enriched elastic capsule. The cellular mechanisms orchestrating these different events however, remain obscure. We investigated the role of the Rac1 GTPase in these processes by targeted deletion of expression using the conditional gene knockout (cKO) approach. Rac1 cKO mice were derived from two different Cre (Le-Cre and MLR-10) transgenic mice in which lens-specific Cre expression starts at embryonic day 8.75 and 10.5, respectively, in both the lens epithelium and fiber cells. The Le-Cre/Rac1 cKO mice exhibited an early-onset (E12.5) and severe lens phenotype compared to the MLR-10/Rac1 cKO (E15.5) mice. While the Le-Cre/Rac1 cKO lenses displayed delayed primary fiber cell elongation, lenses from both Rac1 cKO strains were characterized by abnormal shape, impaired secondary fiber cell migration, sutural defects and thinning of the posterior capsule which often led to rupture. Lens fiber cell N-cadherin/β-catenin/Rap1/Nectin-based cell–cell junction formation and WAVE-2/Abi-2/Nap1-regulated actin polymerization were impaired in the Rac1 deficient mice. Additionally, the Rac1 cKO lenses were characterized by a shortened epithelial sheet, reduced levels of extracellular matrix (ECM) proteins and increased apoptosis. Taken together, these data uncover the essential role of Rac1 GTPase activity in establishment and maintenance of lens shape, suture formation and capsule integrity, and in fiber cell migration, adhesion and survival, via regulation of actin cytoskeletal dynamics, cell adhesive interactions and ECM turnover

    Periaxin is required for hexagonal geometry and membrane organization of mature lens fibers

    Get PDF
    AbstractTransparency of the ocular lens depends on symmetric packing and membrane organization of highly elongated hexagonal fiber cells. These cells possess an extensive, well-ordered cortical cytoskeleton to maintain cell shape and to anchor membrane components. Periaxin (Prx), a PDZ domain protein involved in myelin sheath stabilization, is also a component of adhaerens plaques in lens fiber cells. Here we show that Prx is expressed in lens fibers and exhibits maturation dependent redistribution, clustering discretely at the tricellular junctions in mature fiber cells. Prx exists in a macromolecular complex with proteins involved in membrane organization including ankyrin-B, spectrin, NrCAM, filensin, ezrin and desmoyokin. Importantly, Prx knockout mouse lenses were found to be softer and more easily deformed than normal lenses, revealing disruptions in fiber cell hexagonal packing, membrane skeleton and membrane stability. These observations suggest a key role for Prx in maturation, packing, and membrane organization of lens fiber cells. Hence, there may be functional parallels between the roles of Prx in membrane stabilization of the myelin sheath and the lens fiber cell

    Elevated Levels of Growth/Differentiation Factor-15 in the Aqueous Humor and Serum of Glaucoma Patients

    No full text
    Dysregulated levels of growth/differentiation factor-15 (GDF15), a divergent member of the transforming growth factor-beta super family, have been found to be associated with the pathology of various diseases. In this study, we evaluated the levels of GDF15 in aqueous humor (AH) and serum samples derived from primary open-angle glaucoma (POAG) and age- and gender-matched non-glaucoma (cataract) patients to assess the plausible association between GDF15 and POAG. GDF15 levels were determined using an enzyme-linked immunosorbent assay, and data analysis was performed using the Wilcoxon rank sum test, or the Kruskal–Wallis test and linear regression. GDF15 levels in the AH (n = 105) of POAG patients were significantly elevated (by 7.4-fold) compared to cataract patients (n = 117). Serum samples obtained from a subgroup of POAG patients (n = 41) also showed a significant increase in GDF15 levels (by 50%) compared to cataract patients. GDF15 levels were elevated in male, female, African American, and Caucasian POAG patients. This study reveals a significant and marked elevation of GDF15 levels in the AH of POAG patients compared to non-glaucoma cataract control patients. Although serum GDF15 levels were also elevated in POAG patients, the magnitude of difference was much smaller relative to that found in the AH
    corecore