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Morphogenesis and shape of the ocular lens depend on epithelial cell elongation and differentiation into fiber
cells, followed by the symmetric and compact organization of fiber cells within an enclosed extracellular ma-
trix-enriched elastic capsule. The cellular mechanisms orchestrating these different events however, remain
obscure. We investigated the role of the Rac1 GTPase in these processes by targeted deletion of expression
using the conditional gene knockout (cKO) approach. Rac1 cKO mice were derived from two different Cre
(Le-Cre and MLR-10) transgenic mice in which lens-specific Cre expression starts at embryonic day 8.75
and 10.5, respectively, in both the lens epithelium and fiber cells. The Le-Cre/Rac1 cKO mice exhibited an
early-onset (E12.5) and severe lens phenotype compared to the MLR-10/Rac1 cKO (E15.5) mice. While the
Le-Cre/Rac1 cKO lenses displayed delayed primary fiber cell elongation, lenses from both Rac1 cKO strains
were characterized by abnormal shape, impaired secondary fiber cell migration, sutural defects and thinning
of the posterior capsule which often led to rupture. Lens fiber cell N-cadherin/β-catenin/Rap1/Nectin-based
cell–cell junction formation and WAVE-2/Abi-2/Nap1-regulated actin polymerization were impaired in the
Rac1 deficient mice. Additionally, the Rac1 cKO lenses were characterized by a shortened epithelial sheet, re-
duced levels of extracellular matrix (ECM) proteins and increased apoptosis. Taken together, these data un-
cover the essential role of Rac1 GTPase activity in establishment and maintenance of lens shape, suture
formation and capsule integrity, and in fiber cell migration, adhesion and survival, via regulation of actin cy-
toskeletal dynamics, cell adhesive interactions and ECM turnover.
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Introduction

Vertebrate lens morphogenesis, which is initiated from a single
cell type, provides a unique model system to explore the interrela-
tionship between epithelial cell elongation and differentiation into
fiber cells, and the intercellular and cell: extracellular matrix adhesive
interactions which drive the migration and symmetric packing ar-
rangement of fiber cells (Chow and Lang, 2001; McAvoy, 1980).
These key determinants of lens morphogenesis, architecture and
ultimately its optical properties are thought to be regulated in part,
by various intrinsic and extrinsic factors that control dynamic reorga-
nization of the actin cytoskeleton and cell adhesive interactions
(Bassnett et al., 1999; Beebe et al., 2001; Danysh and Duncan, 2009;
Menko, 2004; Quinlan, 2004; Rafferty and Scholz, 1991; Ramaekers
et al., 1981; Rao and Maddala, 2006; Straub et al., 2003). Importantly,
disruption of actin cytoskeletal organization and cell adhesive inter-
actions have been shown to impair lens epithelial cell elongation
and differentiation, underlining the importance of actin cytoskeletal
organization and cell–cell interactions in these cellular processes
(Beebe and Cerrelli, 1989; Cain et al., 2008; Maddala et al., 2004;
Menko, 2004; Mousa and Trevithick, 1977; Pontoriero et al., 2009;
Weber and Menko, 2006a). Although important insights have
emerged regarding the external cues which control lens epithelial
cell proliferation and differentiation (Chow and Lang, 2001; Lovicu
and McAvoy, 2005), little is known about the cellular signaling path-
ways regulating lens fiber cell actin cytoskeletal dynamics, migration,
adhesion and shape (Chen et al., 2008; Cooper et al., 2008; Grove
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et al., 2004; Maddala et al., 2004, 2008; Rivera et al., 2009; Weber and
Menko, 2006a, 2006b; Zelenka, 2004). Therefore, to understand how
a functional lens is formed from a single cell type and how this organ
attains its distinct architecture, it is important to identify the molecu-
lar mechanisms that regulate the cytoarchitecture and adhesive inter-
actions of lens epithelial and fiber cells.

Rho GTPases are GTP-binding proteins that play a pivotal role in
regulating actin cytoskeletal organization, cell adhesive interactions,
and influence cell polarity, morphogenesis, migration, vesicle traffick-
ing, cell cycle progression and transcriptional activity (Burridge and
Wennerberg, 2004; Etienne-Manneville and Hall, 2002; Ridley,
2001a, 2011). Specific functions are attributed to the Rho, Rac and
Cdc42 GTPases, with Rac GTPase regulating membrane ruffling, pro-
trusive activity and lamellipodial formation via its effects on actin po-
lymerization and cadherin-mediated cell–cell adhesion in various cell
types (Burridge andWennerberg, 2004; Etienne-Manneville and Hall,
2002; Fukata and Kaibuchi, 2001; Ridley, 2001a, 2011). Mammals ex-
press three highly homologous Rac isoforms, Rac1, Rac2 and Rac3,
with the ubiquitously expressed Rac1 being the best studied member
of this family (Heasman and Ridley, 2008). Rac1 regulates actin dy-
namics through two main downstream effector pathways, one of
which is comprised of the p21-activated kinase (PAK) which signals
to the actin cytoskeleton via LIM kinase and cofilin (Bokoch, 2003;
Yang et al., 1998). The second effector pathway involves the verprolin-
homologous protein (WAVE), which is a member of theWiskott–Aldrich
syndrome protein (WASP) family (Eden et al., 2002; Ridley, 2011; Stradal
et al., 2004; Takenawa and Suetsugu, 2007). Additionally, Rac and its ex-
change factor Tiam1 regulate cadherin/catenin-based cell–cell adhesion
by facilitating translocation of cadherins to the adhesion site and stabiliz-
ing the adherens junctions (Fukata and Kaibuchi, 2001; Hordijk et al.,
1997; Malliri and Collard, 2003; Takai et al., 2008).

Lens epithelial and fiber cells express Rac1 and Rac 2 GTPases
(Maddala et al., 2001; Rao et al., 2004), and Rac GTPase activity is
known to be stimulated by various growth factors, PI3 kinase and
lipid oxides in lens epithelial cells (Girao et al., 2003; Maddala et al.,
2003; Weber and Menko, 2006b). Further, the lens fiber cell plasma
membrane has been shown to contain abundant levels of Rac GTPase
relative to all other Rho family GTPases (Bassnett et al., 2009). Impor-
tantly, transgenic mouse lenses overexpressing Rho GDIα, a negative
regulator of Rho GTPases, exhibit defects in development and tissue
architecture (Maddala et al., 2008). Additional indirect evidence for
the participation of Rac GTPase in lens fiber cell migration, adhesion
and differentiation has also been documented in WNT/PCP (Chen
et al., 2008) and Abi-2 (Grove et al., 2004) targeted and PI3-kinase
(Weber and Menko, 2006b) inhibitor treated lenses.

While there is circumstantial evidence for the participation of Rac
GTPase in lens fiber cell differentiation, migration and adhesion, its
direct role in these events and lens morphogenesis remains to be de-
fined. To explore this objective, we generated lens specific Rac1 cKO
mouse models by suppressing Rac1 expression in distinct regions
and at different stages of the developing lens. Collectively, these
Rac1 cKO mouse models reveal that Rac1 plays a crucial role in estab-
lishment of lens shape, suture formation, fiber cell migration and sur-
vival via its effects on actin cytoskeletal dynamics, cell adhesive
interactions and ECM turnover.

Materials and methods

Generation of lens conditional Rac1 GTPase null mice

The Rac1flox, Le-Cre, MLR10-Cre and MLR39-Cre transgenic mice
used in this study have been described previously (Ashery-Padan
et al., 2000; Chen et al., 2009; Glogauer et al., 2003; Zhao et al.,
2004). Briefly, the conditional Rac1flox/flox mice obtained from the
Jackson Laboratory contain loxP sites flanking (floxed) exon 1 on a
C57BL/6J background. Mice homozygous for this allele are viable,
fertile, normal in size and do not display any physical or behavioral
abnormalities. The Le-Cre transgenic mice used in this study express
Cre recombinase at embryonic day 8.75 under the control of a Pax6
P0 enhancer/promoter, with Cre being expressed in both lens epithe-
lium and fiber cells as well as other surface ectoderm-derived eye
structures (Ashery-Padan et al., 2000). The MLR10-Cre mice used in
this study express Cre at embryonic day 10.5 in both the lens epithe-
lium and fibers under the transcriptional control of the minimal αA-
crystallin promoter, which has been modified by the insertion of a
Pax6 consensus binding element (Zhao et al., 2004). MLR39-Cre
mice start expressing Cre at embryonic day 12.5 mainly in the lens fi-
bers via the minimal αA-crystallin promoter, with little to no activity
being present in the lens epithelium (Zhao et al., 2004). MLR10-Cre
and MLR39-Cre mice, which were on FVB background, were back-
crossed to wild type C57BL/6J mice to generate Cre transgenic mice
on the C57BL/6J background. Obtained Le-Cre mice were in the
C57BL/6J background. Mice that were homozygous for a Rac1 allele
(Rac1flox/flox) were crossed with mice heterozygous for a floxed
Rac1 allele (Rac1flox/wild type) and expressing Cre recombinase in the
lens to generate Rac1 GTPase conditional knockout (cKO) offspring.
Mice carrying the Le-Cre transgene (Fig. 1A), MLR10-Cre transgene
(Fig. 1B) and the Rac1 floxed alleles were genotyped by PCR using
tail DNA. Animals were housed in a pathogen-free vivarium and
used in accordance with institutional policies approved by the Duke
University Institutional Animal Care & Use Committee (IACUC).

Histological analysis

Embryonic heads (E12.5, 14.5, 15.5 and 17.5) and whole eyes
(day 1) of Rac1 cKO and wild type (WT) littermate mice were fixed
in 50 mM cacodylate buffer (pH 7.2) containing 2.5% glutaraldehyde,
4% sucrose and 2 mM CaCl2 for 2 h, and transferred to 10% buffered
formalin as described earlier by us (Maddala et al., 2004). The speci-
mens were subsequently embedded in glycol methacrylate, sectioned
(2-μm sections) using a JB-4 microtome and stained with hematoxylin
and eosin (H&E). Micrographs were captured using a Zeiss Axio Imager
equipped with Hamamatsu Orca ER monochrome CCD camera.

Immunofluorescence analyses

Tissue sections derived from both cryosectioning and paraffin
embedding were used in immunofluorescence analyses as we de-
scribed earlier (Maddala et al., in press). The following primary anti-
bodies were used with paraffin sections at a 1:200 dilution for 24 h
at 4 °C: Rac1 (monoclonal, 610651, BD Transduction Laboratories,
San Jose, CA), N-cadherin (monoclonal, clone: 3b9, Invitrogen, Cam-
arillo CA), β-catenin (monoclonal, c7082, Sigma-Aldrich, St Louis,
MO), Rap1A/Rap1B (polyclonal, 2399, Cell Signaling Technologies,
Danvers, MA) and Nectin-1 (polyclonal, SC-28639, Santa Cruz Bio-
technology, CA). Air dried tissue cryosections were immunostained
with the respective polyclonal antibodies to fibronectin, laminin,
collagen IV (gift from Harold Erickson, Duke University), Abi-2
(gift from Ann Marie Pendergast, Duke University), WAVE2 (Milli-
pore, AB4226, Temecula CA) and E-cadherin (Cell Signaling Technol-
ogies, 4065, Danvers, MA), all used at a dilution of 1:1000. After
incubation with primary antibodies (both paraffin-embedded and
cryo-preserved tissue sections), the slides were washed and incu-
bated in the dark for 2 h at room temperature (RT), with either
Alexa fluor 488 or 594 conjugated secondary antibodies (Invitro-
gen). Slides were mounted using Vecta mount and nail polish and
photographed using a Nikon Eclipse 90i confocal laser scanning mi-
croscope. For F-actin staining, the pre-blocked sections were labeled
with phalloidin conjugated with tetra rhodamine isothiocyanate
(TRITC) (500 ng/ml; Sigma-Aldrich) as described above. All repre-
sentative immunofluorescence data reported in this study were



Fig. 1. Generation of lens specific Rac1 deficient mice using the LoxP-Cre system. A and B, depict PCR based genotyping of Le-Cre/Rac1 and MLR10/Rac1 conditional mutant mice,
respectively, using genomic DNA. C and D reveal a significant reduction in Rac1 protein levels in the different cKO lenses (at P1) based on immunoblot analysis (C), and subsequent
densitometry based quantification (D). The values represent average±SEM of three independent analyses (*Pb0.05). β-tubulin was immunoblotted (C) to confirm equal loading of
protein. Lanes 1 and 2 in panel C represent two independent specimens from each group analyzed. E, Distribution of Rac1 in WT and Rac1 cKO mouse lenses based on immunoflu-
orescence staining. Both Le-Cre/Rac1 and MLR10/Rac1 cKO lenses exhibit lack of Rac1 expression in the epithelium (Epi) and fibers (LF) relative to other ocular tissues. A line draw-
ing in the Le-Cre/Rac1 specimen depicts the location of lens. The MLR39/Rac1 cKOs in contrast, exhibit a much reduced expression of Rac1 in lens fibers but not in the lens
epithelium. Scale bar, 20 μm.
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based on a minimum of 3 to 6 tissue sections derived from three in-
dependent specimens per group.

Immunoblotting

To evaluate changes in levels of Rac1, WAVE-2, integrins αvβ1
(ABCAM ab75472), αvβ3 (Santa Cruz Biotec, SC-7312), αvβ5 (Santa
Cruz Biotec, SC-13588) and β1 (Millipore, 04-1109), phospho-cofilin
(C8992 Sigma-Aldrich), Abi-2 (ABCAMab70144), Nap1 (Sigma-Aldrich,
N3788),fibronectin, laminin, collagen IV,β-catenin,N-cadherin, Rap1A/
Rap1B, Nectin-1, and β and γ crystallins (gifts from Sam Zigler, Johns
Hopkins University) and β-tubulin (Sigma-Aldrich T5293) in Rac1
cKO lenses, 6–8 intact postnatal day 1 (P1) lenses were pooled from
both theWT and MLR-10/Rac1cKOmice. Pooled lens samples were ho-
mogenized in 10 mM Tris buffer pH 7.4 containing 0.2 mM MgCl2,
5 mM N-ethylmaleimide, 2.0 mM Na3 Vo4, 10 mM NaF, 60 μM phenyl
methyl sulfonyl fluoride (PMSF), 0.4 mM iodoacetamide, Protease in-
hibitor cocktail tablets (complete, Mini, EDTA-free REF 11836170001)
and PhosSTOP Phosphatase Inhibitor Cocktail Tablets (REF
04906837001) (1each/10 ml buffer, Roche (Basel, Switzerland)). Ho-
mogenates were centrifuged at 800×g for 10 min at 4 °C. Protein con-
centration was estimated in supernatants using the Bio-Rad
reagent (Cat. 500-0006). This fraction was centrifuged further at
100,000×g for 1 h at 4 °C and the insoluble pellet derived was resus-
pended in the tissue homogenization buffer. This centrifugation step
was repeated twice and the resultant pellets were pooled and sus-
pended in homogenization buffer containing 5 M urea, 2 M thiourea
and 2% CHAPs and used as the membrane enriched fraction. Equal
amounts of protein derived from the lens homogenate (800×g su-
pernatant) or membrane enriched insoluble fraction were resolved
on SDS-PAGE gels, followed by electrophoretic transfer to nitrocellu-
lose membrane as described earlier (Maddala et al., in press). Immu-
noblots were developed by enhanced chemiluminescence (ECL), and
scanned densitometrically using a FOTO DYNE Gel Doc scanner
equipped with TL100 software. Densitometry analyses were carried
out using ImageJ software (Maddala et al., in press).

TUNEL assay

In situ terminal transferase dUTP nick end labeling (TUNEL) stain-
ing was performed using an ApopTag Plus Fluorescein kit (Chemicon,
S7111, Temecula, CA) to evaluate and compare apoptotic cell death in
lens sections from Rac1 cKO and WT littermate mice as we described
earlier (Maddala et al., 2008). Apoptotic cells were scored using a
fluorescence microscope (Zeiss Axioplan-II).

Electron microscopy

For transmission electron microscope-based histological analysis,
freshly enucleated eyes from the Le-Cre/Rac1 cKO (E15.5), MLR-10/
Rac1 cKO (E17.5), and WT mice were fixed in 10% buffered formalin
and processed as we described earlier (Maddala et al., in press). Elec-
tron microscopic images were captured with a Jeol JEM-1400 trans-
mission electron microscope equipped with an Orius CCD digital
camera (JEOL, Tokyo, Japan).

Actin filament fluorescence quantification

Actin filament fluorescence was quantified using either ImageJ or
Metamorph. Signal intensity profiles from phalloidin-labeled lens
pit cryosections (one central cryosection for n=3 eyes) were gener-
ated using ImageJ. A line was drawn around the lens pit for each ex-
ample, the signal intensity was then tabulated. The intensity profile
data was normalized to the average Hoechst 33258 signal for each
lens pit, and then normalized for lens pit size. An average intensity
profile was then generated. Similar measurements were done for each
of the developmental stages studied. In the case of Metamorph-based
measurements, the average fluorescence was quantified as the mean
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pixel intensity per unit areawithin each region. The camerameasures the
intensity of each pixel and gives a gray-scale value between 0 and 4096.
Eachmeasurementwas corrected for the backgroundfluorescence. Imag-
ing conditions were set constant for both WT and Rac1 mutant sections,
and 12-bit images were captured with an image exposure time of
100 ms. The background corrected pixel intensity values were exported
into excel sheet and saved for further analysis. A minimum of four mea-
surements from each of six sections derived from three independent
specimenswere used to calculate average pixel intensities for each devel-
opmental stages tested.

Capsule width and epithelial sheet length measurements

Capsule width was measured using the measurement tool in
Adobe Photoshop CS3 Extended software. Briefly, the image with
scale bar was opened in Photoshop and the scale bar was used as ref-
erence to measure the number of pixels. The measurement tool was
used to draw a line across the width from one end to the capsule to
other end, and the lengths were tabulated. A similar measurement
strategy was used to determine the lens epithelial sheet length. Brief-
ly, using scale bar as reference, a line was drawn on 10× sagittal sec-
tions, with the start point being an epithelial cell adjacent to one
showing signs of elongation and extending to the other end, to an ep-
ithelial cell that is adjacent to a cell starting to elongate. For all the
measurements six alternate sections were taken from the center of
the lens, from three independent mouse lenses.

Statistical analysis

Where required, the Student's t-testwas performed to determine sig-
nificance of differences noted between the Rac1 mutant and WT speci-
mens using Sigma plot. Values are represented as Mean±Standard
Error of the Mean (SEM).

Results

Conditional deletion of Rac1 GTPase in the eye lens and the associated
ocular phenotype

To investigate the role of Rac1GTPase in lensmorphogenesis and ar-
chitecture, we conditionally deleted Rac1 by expressing Cre recombi-
nase under the control of lens regulatory sequences using three
different transgenic mouse lines. As described earlier, the Le-Cre line
initiates Cre expression by embryonic day 8.75 in the head surface ecto-
derm that includes the presumptive lens ectoderm (Ashery-Padan et al.,
2000). Within the eye, the MLR10-Cre expresses Cre lens-specifically
initiating at E10.5 and being active in both the lens epithelium and fi-
bers, while,MLR39-Cre is active only infiber cells, initiating lens specific
expression at E 12.5 (Zhao et al., 2004). Recombination of the condition-
al Rac1 alleles led to an expected and dramatic reduction (~90%) in Rac1
protein levels in lens total homogenates (800×g supernatant; immuno-
blot analysis; Fig. 1C; densitometric analysis: Fig. 1D; n=3) and the in-
tact lens (immunofluorescence analysis, Fig. 1E) of P1 Le-Cre/Rac1 and
MLR10/Rac1 null mice, respectively, relative to Rac1 levels in littermate
WTmice. In Fig. 1C, lanes 1 and 2 represent two independent specimens
from each group. As shown in Fig. 1E, Rac1 expression is suppressed in
both lens epithelium (Epi) and fibers (LF) in Le-Cre/Rac1 (lens is indi-
cated with line drawing) and MLR10/Rac1 cKO mice. Compared to the
Le-Cre/Rac1 and MRL10/Rac1 cKO lenses, the MLR39/Rac1 cKO mouse
lenses exhibited only a 60% reduction in Rac1 protein levels (Figs. 1C
and D). As expected, this reduction in Rac1 protein level was specific
to fiber cells but not noted in the epithelium (Fig. 1E). Correspondingly,
while both Le-Cre/Rac1 andMLR10/Rac1 cKO (weaning and older)mice
exhibited severe, bilateral microphthalmia, the MLR39/Rac1 cKO mice
had eyes of normal size (data not shown). For immunoblot analyses of
Rac1 protein levels in the Le-Cre/Rac1 cKO mice, intact lenses from
day 1 old mice, which were found only in a small number of specimens
(as shown in Fig. 1E), were used.

Histological analysis (sagittal sections) of developing lenses by
hematoxylin and eosin (H&E) staining revealed morphological ab-
normalities in both Le-Cre/Rac1 and MLR10/Rac1 cKO mice. At
E12.5, the developing lenses of Le-Cre/Rac1 cKOs were smaller in
size with the primary lens fiber cells displaying delayed elongation
compared to littermate WT lenses (Fig. 2A, arrows). By E14.5, the
lens epithelial sheet length in Le-Cre/Rac1 cKO mice becomes
markedly shorter than that of WT lenses. Further, the Le-Cre/
Rac1 cKO mice exhibit defective lens fiber cell organization and re-
duction in lens size (Fig. 2A). The lens then becomes progressively
and severely deformed through E15.5, E17.5 and day 1, with the
lens tissue attaching to the cornea, followed ultimately by com-
plete rupture of the lens posterior capsule and leakage of lens con-
tent into the vitreous body (Fig. 2B). Considerable variability was
noted with respect to severity of lens phenotype within the same
line. For example, a small number of eyes derived from the Le-
Cre/Rac1 cKO mice at P1 contained intact lens although with
much reduced size as shown in Fig. 1E. In contrast to the Le-Cre/
Rac1 cKO lenses, the MLR10/Rac1 cKO lenses showed no notable
defects prior to E15.5 (not shown). At E15.5, although the lens ep-
ithelium and fiber cell elongation are normal, lens size is much
smaller and primary fiber cells display abnormal orientation with
respect to anterior to posterior polarity, compared to the WT
(Fig. 2B). By E17.5, all the fibers were visibly disoriented compared
to the WT, and by day 1 (P1), the lens appears more cup-shaped as
opposed to the spherical shape typical of normal lenses, with fibers
exhibiting abnormal migration pattern and ultimately leading to a
ruptured posterior capsule in some lenses. In both Le-Cre/Rac1
(E14.5) and MLR10/Rac1 (E17.5 and P1) cKOs however, expression
of fiber cell differentiation markers including β/γ-crystallins and
aquaporin-0 was found to be comparable to WT lenses by immu-
nohistochemical and immunoblot analyses (not shown). On a rela-
tive basis, lens developmental defects were more severe, and
displayed an earlier onset (by almost 2.5 to 3 days) in the Le-
Cre/Rac1 cKO mice compared to the MLR10/Rac1 cKO mice, consis-
tent with the expected earlier onset of Cre expression in the Le-
Cre/Rac1 cKO mice. In contrast, the MLR39/Rac1 cKO lenses (both
neonatal and adult) did not show any observable defects in either
lens development or architecture (data not shown). Based on these
histological observations, we only used the embryonic (Le-Cre/
Rac1 and MLR10/Rac1) and P1 (MLR10/Rac1) intact lens speci-
mens from cKO mice along with their respective littermate WT
mice for all further comparative analyses.

Rac1 deficient mice exhibit defects in lens shape, fiber cell migration,
orientation and suture formation

The lenses derived from both the Le-Cre/Rac1 and MLR10/Rac1
cKO mice exhibit consistent abnormalities in lens shape, suture for-
mation, fiber cell migration pattern and orientation with severe and
earlier onset in the Le-Cre/Rac1 cKO lenses compared to the
MLR10/Rac1 cKO (Figs. 2 and 3). In both Le-Cre/Rac1 and MLR10/
Rac1 cKO lenses, differentiating fiber cells starting from embryonic
stages (E12.5 and E15.5, respectively) fail to transition to a typical
concave orientation from their initial convex orientation. These
changes were easily detected in histological sections of MLR10/
Rac1 cKO lenses since the initial phenotype is milder in these mice
relative to the Le-Cre/Rac1 cKO lenses (Fig. 3). As shown in the sche-
matic drawings (Figs. 3A and C), early differentiating WT fibers elon-
gate at the germinative zone, migrating in a convex orientation
initially, gaining a concave orientation and migrating toward the
lens interior by reorganizing their adhesive interactions posteriorly
with basement membrane of the capsule and anteriorly with epithe-
lial cells. This transition in fiber cell morphology occurs after they



Fig. 2. Lens phenotype in Rac1 deficient mice. A. Le-Cre/Rac1 cKO lenses exhibit reduction in size and impaired elongation of primary fiber cells (arrows) at E12.5. At E14.5, the lens
epithelial sheet length becomes markedly reduced and fiber cells display abnormal organization along with abnormal lens shape in the Rac1 cKOs as compared to lenses from WT
littermates. B. The Le-Cre/Rac1 cKO lenses exhibit significantly reduced size and progressive degeneration of fiber cells and lens material leaking into the vitreous body in associ-
ation with ruptured capsules starting from E15.5 to postnatal day 1. In contrast to Le-Cre/Rac1 cKOs, the MLR10/Rac1 cKO lenses exhibit early and noticeable histological changes
starting at E15.5. At E15.5, the lens is slightly smaller and the secondary fiber cell organization is noticeably different from the WT controls. Subsequently at E17.5 and P1, the ep-
ithelial sheet (Epi) length was found to be much shorter in the MLR10/Rac1 cKO lenses with the fiber cells (LF) exhibiting noticeable abnormalities in migration pattern and orga-
nization. These changes were found to be progressive, resulting finally in change of lens shape and size as compared to WT control lenses. Scale bars: A and B 20 μm.
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Fig. 3. Conditional Rac1 deficient mice reveal abnormal lens shape, fiber cell migration and suture formation with considerable variations within each group. A. Schematic illustra-
tion of representative shape changes in lens and abnormal fiber cell (LF) migration pattern and shortened epithelial sheet (Epi) length in the E15.5 Le-Cre/Rac1 cKO lenses as com-
pared to WT specimens. B and C. Representative histological images (B) and corresponding schematic drawings (C) of lens shape changes, abnormal fiber cell migration and
decreased epithelial sheet length in the P1 MLR10/Rac1 cKO mice compared to WT. D. Representative histological images (D) of lenses derived from the P1 MLR10/Rac1 ckO
mice exhibiting defects in suture formation (arrows) in addition to fiber cell migration. E. Quantitative differences in lens epithelial sheet length (in μm) in Le-Cre/Rac1 and
MLR10/Rac1 cKOs as compared to littermate WT lenses. Line drawings in panels A and C represent only a small number of lens fiber cells. The schematics are based on 2D images.
The values represent average±SEM values from six independent specimens (*Pb0.05). Scale bars. B and D is 20 μm.

35R. Maddala et al. / Developmental Biology 360 (2011) 30–43
develop contacts with the lens epithelium through the apical termi-
nals, and with the posterior capsule via their posterior terminals. Sub-
sequently, these fiber cell terminals (both apical and basal) detach
from the epithelium and posterior capsule, and the fiber cell termi-
nals at the anterior and posterior poles interact with each other deriv-
ing from the opposite poles and form sutures (Kuszak et al., 2004). In
the Rac1 cKO lenses (in both Le-Cre and MLR10 Rac1 cKO), the fiber
cells fail to migrate, orient normally and gain the expected concave
orientation (Figs. 3A–C), and to form the regular lens sutures
(Fig. 3D, arrows). The extent of these defects, especially the pattern
of fiber cell migration, orientation and sutures appears to vary from
lens to lens as depicted in the schematics (Fig. 3). These schematics
represent only a small number of fiber cells of the lens. Further, in
both Le-Cre/Rac1 (E14.5) and MLR10/Rac1 (P1) cKO lenses, epithelial
sheet length is significantly smaller compared to the respective WT
lenses based on quantitative measurements (Fig. 3E). Unlike in WT
lenses, the lens epithelium in Rac1 cKOs does not extend to the bow
regions or the germinative zone (Figs. 3A–E). It is likely that there is
a shift in the germinative zone, with the bow region shifting upwards
due to the flattening of the anterior hemisphere in these Rac1 cKO



36 R. Maddala et al. / Developmental Biology 360 (2011) 30–43
lenses. These different phenotypes collectively lead to the abnormal
shape of both Le-Cre/Rac1 and MLR10/Rac1 cKO lenses as depicted
in the schematic drawings (Fig. 3).

Increased lens epithelial and fiber cell apoptosis in the absence of Rac1
GTPase

As described above, one of the predominant phenotypes in the
Rac1 deficient mice include microphthalmic eyes with reduced lens
size and shortened lens epithelial sheet suggesting impairment in
cell survival mechanisms (Figs. 1–3). To determine whether the ab-
sence of Rac1 GTPase impacted cell survival of both epithelium and
fiber cells of the lens and led to size and shape changes in Rac1 defi-
cient lenses as noted in Figs. 1–3, we evaluated the status of apoptosis
using TUNEL analysis of E14.5 Le-Cre/Rac1, E17.5 MLR10/Rac1 cKO,
and corresponding WT eyes. Quantitative analysis of TUNEL positive
cells (based on direct counting, n=4 independent samples counted)
revealed a significant increase in apoptosis in both epithelium and
fiber cells of the Le-Cre/Rac1 (red/orange staining, arrows) and
MLR10/Rac1 (green/yellow, arrows) cKO lenses compared to WT
lenses (Figs. 4A and B). In Fig. 4A, while the Le-Cre/Rac1 specimens
were counterstained for cell nuclei (blue fluorescence) with Hoechst,
the MLR10/Rac1 specimens were stained with propidium iodide (red
fluorescence). The green fluorescence in the Le-Cre/Rac1 null speci-
mens is from the GFP expression in the Le-Cre mice. The diffused
green stain in the WT specimen represents nonspecific background.

Defective actin cytoskeletal organization and downregulated expression
of Rac GTPase effector proteins in Rac1 cKO lenses

To determine the effects of the lack of Rac1 expression on lens
epithelial and fiber cell actin cytoskeletal organization, we examined
Fig. 4. Increased apoptosis in Rac1 deficient mouse lens epithelium and fiber cells. Cryosect
immunostained for TUNEL positive cells (red fluorescence in Le-Cre/Rac1 and green fluoresc
epithelium (arrows) and fiber cells (arrow heads) compared to littermate WT lenses. The b
with Hoechst and propidium iodide, respectively. Green fluorescence in Le-Cre/Rac1 specim
pattern. B. Manual quantification of TUNEL positive cells (bar graphs) per specimen of lens e
deficient lenses compared to theWT specimens. The values represent averages±SEM from 4
F-actin staining of lens cryosections with rhodamine–phalloidin
(red fluorescence). Lenses derived from Le-Cre/Rac1 (E12.5, E14.5
and E15.5) and MLR10/Rac1 cKO mice (E15.5, E16.5, E17.5 and P1)
from different age groups were used in these analyses. Both Le-
Cre/Rac1 and MLR10/Rac1 cKO lenses showed a gradual and pro-
gressive reduction in F-actin staining in both epithelium and fiber
cells starting from E12.5 and E15.5 in the Le-Cre/Rac1 and MLR10/
Rac1 cKO lenses, respectively, as compared to WT lenses (Fig. 5).
Further, F-actin fluorescence intensity quantitated (n=4) by pixel
counting using ImageJ (A) or Metamorph (B) confirmed a significant
reduction in the E14.5 Le-Cre/Rac1 and day 1 MLR10/Rac1 cKO
lenses as compared to littermate WT lenses (presented as % change
in F-actin signal intensity from WT; Fig. 5C), indicating the disrup-
tion of actin cytoskeletal organization and actin polymerization in
the Rac1 deficient lenses.

To obtain further insight into themolecular basis for the changes in
F-actin distribution in Rac1 deficient lenses, we assessed the expres-
sion and distribution profiles of downstream regulatory components
of Rac1 signaling pathways that are known to regulate actin nucle-
ation and branching. Expression of WAVE-2, Abi-2, and Nap1 was
assessed by immunofluorescence and immunoblot analysis of either
E15.5 Le-Cre/Rac1, E17.5 MLR10-Cre/Rac1 (immuno-fluorescence),
or P1 MLR10/Rac1 cKO (immunoblot) lenses. Immunofluorescence
staining of both WAVE-2 and Abi-2 were found to be markedly de-
creased in both the epithelium (Epi) and fiber cells (LF) in Rac1 cKO
lenses compared to WT lenses (Fig. 6A). Additionally, immunoblot
analysis of P1 MLR10/Rac1 cKO intact lens homogenates (800×g su-
pernatants) confirmed a significant decrease (n=3, pooled speci-
mens; protein levels normalized to β-tubulin) in levels of WAVE-2,
Abi-2 and Nap1 proteins compared to littermate WT lenses (Figs. 6B
and C). In addition to these Rac1 effector molecules, we also evaluated
for changes in phosphorylation status of cofilin in the P1 MLR10-
ions derived from the Le-Cre/Rac1 (E14.5) and MLR10/Rac1 (E17.5) ckO mouse lenses
ence in MLR10/Rac1 cKO specimens) revealed a significant increase in apoptosis in the
lue (top panel) and red (lower panel) staining in panel A shows nuclei counterstaining
ens indicates GFP distribution which in turn represents Cre expression and distribution
pithelium and fiber mass showed a significant increase in both these regions in the Rac1
to 5 independent analyses (*Pb0.05). Scale bar: Top panel: 40 μm, Lower panel: 20 μm.



Fig. 5. Conditional Rac1 deficient mouse lenses exhibit alterations in F-actin distribution. A, B. Both Le-Cre/Rac1 andMLR10/Rac1 cKO lenses (cryosections) stained for F-actin with phal-
loidin–rhodamine exhibit a progressive decrease in F-actin immunofluorescence staining in epithelium (Epi) andfiber (LF) cells starting fromE12.5 to day 1 as compared to littermateWT
specimens. C. In Le-Cre/Rac1 and MLR10/Rac1 cKO lenses at E14.5 and day 1, respectively, F-actin levels were significantly decreased in both the epithelium and in fiber cells, as deter-
mined by F-actin pixel intensity measurements using ImageJ (C; Left panel) orMetamorph (C; Right panel). The values represent average±SEM values from three independent analyses
(*Pb0.05). Scale bars: A: 40 μm, B; 20 μm. Green fluorescence derived from the GFP in panel A shows the expression and distribution profile of Cre recombinase in the Le-Cre/Rac1 cKO
lenses. Blue staining in Le-Cre/Rac1 mutant specimens show cell nuclei stained with Hoechst. lv; lens vesicle, pfc: primary fiber cells.
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Cre/Rac1 cKO lens homogenates (800×g supernatants). Cofilin, a
well characterized downstream target of Rac GTPase signaling
with actin filament severing activity and role in cell migration, is
negatively regulated by phosphorylation at serine 3 (Arber et al.,
1998; Huang et al., 2006; Yang et al., 1998). Therefore, changes
in cofilin phosphorylation were quantified by immunoblot analysis
using a phospho-specific cofilin antibody. Intriguingly, the levels of
phospho-cofilin were found to be significantly elevated (by~48%,
n=3, pooled specimens) in the Rac1 deficient lenses compared to
WT specimens (Figs. 6B and C).

Impaired cell–cell interactions in the Rac1 deficient lens epithelium and
fibers

To explore the effects of absence of Rac1 GTPase on lens epithelial
and fiber cell–cell interactions, we examined the distribution pattern



Fig. 6. Conditional Rac1 deficient mouse lenses show abnormalities in distribution and deficits in levels of Rac1 downstream proteins involved in actin polymerization and branch-
ing. A. Lens cryosections derived from the E15.5 and E17.5 Le-Cre/Rac1 and MLR10/Rac1 cKO lenses, respectively, immunostained for WAVE-2 and Abi-2 show altered distribution
patterns both in the epithelium (Epi) and fiber cells (LF), with the staining being decreased relative to littermate WT lenses. B and C. Lens homogenates (800×g supernatants) de-
rived from P1 MLR10/Rac1 cKO mice, and analyzed by immunoblotting, revealed significant decreases in levels of WAVE-2, Abi-2 and Nap1 as compared to WT lenses. In contrast,
levels of phosphorylated-cofilin were increased significantly in the Rac1 deficient lenses compared to WT samples. The values represent average±SEM values for three indepen-
dent analyses (*Pb0.05). Scale bar: 20 μm.
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of E-cadherin in the lens epithelium, and β-catenin, Rap1A/B, Nectin-
1 and N-cadherin in the lens fiber mass by immunofluorescence ana-
lyses using Le-Cre/Rac1 (E15.5) and MLR10/Rac1 cKO (E17.5 and P1)
lenses. Lens sagittal and equatorial sections were analyzed for lens
epithelial and fiber cell–cell junctions, respectively. The lens epitheli-
um of both Le-Cre/Rac1 and MLR10/Rac1 cKO specimens showed a
notable reduction in E-cadherin staining at cell–cell junctions as com-
pared to WT specimens (Figs. 7A and B). Insets in Fig. 7B depict mag-
nified (2.5×) areas of the central epithelium (indicated with a box).
While N-cadherin, β-catenin, Nectin-1 and Rap1A/B were distributed
discretely to the cell–cell junctions of the hexagonal fiber cells (LF) in
Fig. 7. Conditional Rac1 deficient lenses exhibit defects in cell–cell interactions. A and B. Le
(E17.5 and P1) cKO mice immunostained for E-cadherin reveal markedly reduced localizati
disruption of adherens junctions. The insets show areas at a higher magnification (2.5×). C.
from P1 MLR10/Rac1 cKO mice reveals disruption in localization of β-catenin, N-cadherin, N
membrane of hexagonal fiber cells in WT but not in the Rac1 deficient lenses, indicating defe
sequent densitometric analysis, respectively, of Rac1 deficient lenses derived from P1MLR10
Nectin-1 as compared to WT lenses. The values represent average±SEM values of three in
derived from both WT and Le-Cre/Rac1 (E15.5) and MLR10/Rac1 (E17.5) cKOs were exam
packed fibers with distinct hexagonal shape (with two long arms and 4 short arms indicate
fiber cell shape and asymmetric organization. Representative images of 4 independent spec
the WT specimens, these proteins did not localize to the cell–cell
junctions in Rac1 deficient lenses (in E17.5 and P1 MLR10/Rac1,
Fig. 7C, data shown for the P1 specimens). Additionally, the changes
in cell adhesive interactions in the Rac1 deficient lenses were associat-
ed with a significant decrease in N-cadherin, β-catenin, and Nectin-1
protein levels based on immunoblot analysis of the membrane
enriched insoluble fraction derived from the P1 Rac1 cKOs as com-
pared to WT lenses (Fig. 7D and E; n=3, pooled specimens, normal-
ized to β-tubulin protein levels of 800×g lens supernatant),
indicating impaired formation and stability of adherens junctions in
the Rac1 deficient lenses. Due to the severe phenotype associated
ns cryosections (sagittal plane) derived from the Le-Cre/Rac1 (E15.5) and MLR10/Rac1
on of E-cadherin to the cell–cell junctions as compared to the littermate WT, indicating
Immunostaining analysis of paraffin sections of Rac1 deficient lenses (equatorial plane)
ectin-1 and Rap1A/B to the cell–cell junctions. These proteins are localized to the cell
ctive fiber cell–cell interactions in Rac1 deficient lenses. D and E. Immunoblot and sub-
/Rac1 cKOmice showed a significant decrease in the levels of β-catenin, N-cadherin and
dependent analyses (*Pb0.05). Scale bar. A, B and C: 20 μm. F. Lens equatorial sections
ined by transmission electron microscopy. While the WT specimens revealed closely
d with arrows and arrow heads, respectively), Rac1 deficient lenses exhibit disrupted
imens were shown. Scale bar: 0.5 μm.
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with the Le-Cre/Rac1 cKOs, we could not obtain suitable equatorial
plane paraffin sections for these analyses.

To explore whether the changes in the adherens junction complexes
described above in the Rac1 deficient lenses influence the hexagonal ge-
ometry and symmetric organization of fiber cells, we performed
transmission electronmicroscope-based histological analysis using equa-
torial sections of lenses from E15.5 Le-Cre/Rac1, E17.5 MLR10/Rac1 ckO
lenses, and their respective WT lenses. As shown in Fig. 7F, the WT lens
fibers showed an expected hexagonal shape with long (arrows) and
short arms (arrow heads) with close packing among the adjacent fiber



Fig. 8. Conditional Rac1 deficient mouse lenses reveal thinning of the lens capsule in association with decreased ECM proteins and disruptions of fiber cell basal terminal attachment
to the lens capsule. A. Lens cryosections (sagittal plane) derived from the Le-Cre/Rac1 (E15.5) and MLR10/Rac1 (P1) cKO mice were immunostained for various ECM proteins. Both
the WT and the Rac1 deficient lenses stained positively for laminin, fibronectin and collagen IV, which localized distinctly to the lens capsule, distributing to both anterior and pos-
terior regions. In contrast to the WT lenses however, the Rac1 deficient lenses presented with much thinner capsules, especially in the posterior region. Further, the intensity of
staining of individual ECM proteins was found to be markedly reduced in the Rac1 deficient lenses relative to WT lenses. Representative images of 3 independent specimens are
shown. Scale bar: 20 μm. B. Quantification of posterior lens capsule (central region) thickness showed a significant decrease in both Le-Cre/Rac1 and MLR10/Rac1 cKO specimens
compared to the WT lenses. C and D. Immunoblot and subsequent densitimetric analyses, respectively of ECM proteins in lens homogenates of Rac1 deficient and WT specimens
confirmed a significant decrease in laminin, fibronectin and collagen IV in the P1 MLR10/Rac1 cKO lens compared to the littermateWT lens. E and F. Analysis of Rac1 deficient lenses
derived from P1 MLR10/Rac1 cKOmice for changes in levels of integrins (αVβ1, αVβ3, αVβ5 and β1) by immunoblotting (E) followed by densitometric quantification (F) showed a
significant decrease in the levels of these proteins as compared to littermate WT lenses. The values represent average±SEM values from three independent analyses (*Pb0.05). G.
Sagittal lens sections derived from the Le-Cre/Rac1 (E15.5) and MLR10/Rac1 (E17.5) cKO and corresponding WTmice assessed by transmission electron microscopy. These analyses
revealed that while the fiber cell posterior membrane and cytoplasmic protrusions were attached firmly and uniformly to the lens capsule in the WT lens images (indicated by ar-
rows), in the Rac1 deficient lenses, the fiber cell posterior protrusions (arrow heads) were found to be shortened and broken with disrupted contacts with the lens capsule, indi-
cating disruptions of cell–ECM interactions and impairment in fiber cell membrane protrusion. Representative images of 4 independent analyses are shown. Scale bar: 0.5 μm.
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cells. In contrast, the Rac1-deficient lens specimens exhibited disorga-
nized fiber cells with disrupted hexagonal cell shape (Fig. 7F). These ob-
servations are based on a minimum of 3 independent analyses.

Impaired extracellular matrix synthesis and thinning of lens capsule in
Rac1 deficient mouse lenses

Since a ruptured posterior capsule was one of the consistent phe-
notypes noted in the Rac1 deficient lenses, we examined the possible
influence of Rac1 deficiency on the organization and distribution of
extracellular matrix proteins (ECM) of the lens by immunofluores-
cence analysis. Antibodies against collagen IV, laminin and fibronectin
were used to analyze E15.5 Le-Cre/Rac1 and P1 MLR10/Rac1 ckO
lenses, alongside littermate WT specimens. As shown in Fig. 8A, all
three antibodies revealed specific and intense staining distributing
only to the lens capsule. Additionally, based on these staining pat-
terns, in both Le-Cre/Rac1 and MLR10/Rac1 cKO lenses, we observed
a consistent thinning of the posterior capsule more so than the ante-
rior capsule, relative to WT controls. Furthermore, measurements of
posterior central capsule thickness revealed a significant (by 60%) de-
crease in Rac1-deficient lenses compared to WT controls (Fig. 8B,
n=6). Additionally, Rac-deficient lenses exhibited marked reduction
in immunofluorescence staining for all three ECM molecule distribu-
tion assessed (fibronectin, laminin and collagen IV), relative to WT
specimens (Fig. 8A). Based on these observations, we also analyzed
protein levels of collagen IV, laminin and fibronectin, in lysates
(800×g supernatants) of the P1 MLR10/Rac1 cKO lenses by immuno-
blot analysis (Fig. 8C). Consistent with the immunofluorescence data,
there were significant decreases in the levels of collagen IV, laminin
and fibronectin in Rac1 deficient lenses compared to WT specimens
based on densitometric analysis (Fig. 8D, n=3, pooled specimens,
normalized to β-tubulin). In Fig. 8C, lanes 1 and 2 represent two inde-
pendent specimens from each group.

Since the ECM organization of lens capsule, fiber cell adhesion and
migration were severely impaired in the Rac1-deficient lenses (Figs. 3
and 7), we then evaluated the levels of integrin proteins, which func-
tion as ECM receptors. Immunoblot analysis of lens lysates (800×g
supernatants) derived from the P1 MLR10/Rac1 cKO mice showed a
significant decrease in the levels of αvβ1, αvβ3, αvβ5 and β1 integ-
rins compared to WT lenses (Figs. 8E and F, n=3, pooled specimens),
indicative of down regulation or degradation in association with the
decreases in ECM noted in the absence of Rac1 in cKO lenses (Fig. 8).

Based on these different observations, we also evaluated the organi-
zation and interaction of fiber cell posterior terminals with the lens
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capsule by TEM using sagittal sections of both Le-Cre/Rac1 (E15.5) and
MLR10/Rac1 (E17.5) cKO lenses along with respective WT specimens.
Interestingly, both the Le-Cre/Rac1 and MRL10/Rac1 cKO lens speci-
mens exhibited distinct morphological abnormalities at the interface
of fiber cell terminals and the lens capsule basement membrane
(Fig. 8G). While the WT specimens showed well organized and spread
out, web-like membrane/cytoplasmic extensions (Fig. 8G, arrows)
attaching fiber cell terminals to the lens capsule basement membrane,
these web-like protrusive structures were smaller, broken and de-
tached from the lens capsule in the Rac1 deficient specimens (Fig. 8G,
arrow heads). It is not clear whether these structures are membrane
protrusions of the fiber cell terminals enriched in basalmembrane com-
plexes (BMCs) known to be composed of cell adhesive proteins, β1-
integrin, myosin and actin (Bassnett et al., 1999). However, there
seem to be definite abnormalities in the attachment of the membrane
extensions to the capsule in the Rac1-deficient lens, providingmorpho-
logical evidence for the disruption in themembrane extensions and ad-
hesive interactions between the basement membrane of capsule and
the fiber cell posterior terminals. These conclusions were based on
data derived from four independent specimens from each group.

Discussion

Using a tissue-specific conditional gene deletion approach, we
demonstrate an essential role for Rac1 GTPase during lens morpho-
genesis and maturation. We show that Rac1 GTPase regulates crucial
aspects of lens morphogenesis and cytoarchitecture including epithe-
lial cell survival, fiber cell elongation, migration and adhesion. This
study also reveals the critical role for Rac1 GTPase in establishment
of lens shape, suture formation, capsule basement membrane integri-
ty, and fiber cell hexagonal geometry, which are important determi-
nants of lens function.

Rac1 is expressed uniformly throughout the mouse lens including
in the epithelium and fiber cells. Lack of Rac1 expression in the devel-
oping lens resulted in abnormal lens shape and reduction in size
(Figs. 2 and 3), with the prominent phenotype being manifested
only when Rac1 expression is deleted from both lens epithelium and
fibers, as evidenced by the lack of a lens phenotype in MLR39/Rac1
cKO mice in which Rac1 expression is deleted only in the fiber cells
(Fig. 1). This observation demonstrates the importance of the epithe-
lium and its interaction with fiber cells in establishment of lens shape
and growth. Further, this phenotype appears to be a direct result of
shortening of the epithelial sheet, increased apoptosis, and the abnor-
mal fiber cell migration and orientation noted in the Rac1 deficient
lenses (Figs. 3 and 4). While the molecular basis for the shortened ep-
ithelial sheet in Rac1 deleted lenses however, is not entirely clear at
present, we speculate that the increase in epithelial cell apoptosis
(Fig. 4) which is consistent with the known anti-apoptotic activity of
Rac (Murga et al., 2002; Nishida et al., 1999) could be partly responsi-
ble for this phenotype. Additionally, the lens epithelium in Rac1 null
mice exhibited abnormal cell cycle progression based on in vivo
BrdU incorporation profile (Fig. S1) in association with defective
E-cadherin-based cell–cell interactions, suggesting compromised
cell survival and proliferation in the absence of Rac1 GTPase in
lens. However, it is important to point out that the MLR39 Cre
transgenic mice start expressing the Cre protein from E12.5, unlike
the Le-Cre (at E8.75) and the MLR10 (at E10.5) mice. Further, the
promoters driving Cre expression are different in the three Cre
transgenic mice used in this study (Ashery-Padan et al., 2000;
Zhao et al., 2004). Therefore, the possibility that lack of phenotype
in the MLR39/Rac1 mutant mice is partly attributable to the differ-
ences in amount and onset of Cre expression in fiber cells cannot
be completely ruled out. It is possible that manifestation of the ab-
normal lens shape and fiber cell orientation phenotype result from
the absence of Rac1 GTPase expression during early embryonic lens
development, perhaps before E12.5.
Rac1 GTPase has been demonstrated to control directional cell mi-
gration in various cell types via regulating cell adhesive interactions
and the formation of cell membrane protrusions and lamellipodia at
the leading edges, by acting downstream of growth factor receptors,
integrins, PI3 kinase and its lipid products (Burridge andWennerberg,
2004; Raftopoulou and Hall, 2004; Ridley, 2001b; Ridley et al., 2003).
However, the role of Rac in cell migration in the context of organogen-
esis is obscure (Heasman and Ridley, 2008; Wang and Zheng, 2007),
and this study provides direct evidence for the involvement of Rac1
in fiber cell migration and organization in the intact lens, as shown
in Fig. 3. The mouse lens expresses both Rac1 and Rac2 (Rao et al.,
2004) and it is evident from the lens phenotype and other lens
changes reported in this study that Rac1 plays a non-redundant role
in lens. Rac1 GTPase regulates actin polymerization during lamellipo-
dial extension andmembrane ruffle formation by activating the actin-
nucleating ARP2/3 complex through WASP-family verprolin-homolo-
gous proteins (WAVE) (Eden et al., 2002; Ridley, 2011; Stradal et al.,
2004; Takenawa and Suetsugu, 2007; Yamazaki et al., 2003). Impor-
tantly, WAVE-2 has been demonstrated to regulate ARP2/3 mediated
actin assembly and branching in a wide range of systems, acting in
concert with Sra1, Nap1, Abi and HSPC300, which exist as a complex
with WAVE-2 (Eden et al., 2002; Ridley, 2011; Stradal et al., 2004;
Takenawa and Suetsugu, 2007). Rac1 GTPase interacts with and acti-
vates the WAVE-2 complex through the Sra1 subunit (Kunda et al.,
2003; Pollitt and Insall, 2009; Stradal et al., 2004; Takenawa and
Suetsugu, 2007). WAVE-2 and Abi-2 were found to be abundantly
expressed in lens fibers relative to the epithelium and other ocular
tissues based on distribution analysis (Fig. 6A). Moreover, distribu-
tion analysis of actin filaments, WAVE-2 and its associated proteins
Abi-2 and Nap1 demonstrated reduced actin filament staining and
downregulation of WAVE-2, Abi-2 and Nap1, in the lens epithelium
and fiber cells of Rac1 cKOmice, implying impairment in actin nucle-
ation possibly via the ARP2/3 complex. These observations, taken to-
gether with the earlier report on the lens phenotype of defective
fiber cell migration and cell–cell interactions in the Abi-2 null mice
(Grove et al., 2004), confirm the importance of Rac1 GTPase regulat-
edWAVE-2 complex activity in controlling fiber cell migration. Abi-1
and Abi-2 both have been found to exist as part of the WAVE protein
complex and to regulate actin dynamics (Eden et al., 2002; Soderling
et al., 2002).

Stimulation of PAK kinase and LIM kinase by Rac1 GTPase results
in the phosphorylation-dependent inactivation of cofilin (Arber
et al., 1998; Huang et al., 2006; Yang et al., 1998), and leads to de-
creased actin filament severing and cell movement under normal cir-
cumstances. Intriguingly, deletion of Rac1 expression did not result in
the expected decrease in PAK and LIM kinase-mediated cofilin phos-
phorylation, with Rac1 KO lenses exhibiting an increase in cofilin
phosphorylation (Figs. 6B and C). This observation suggests the in-
volvement of a Rac1-independent pathway in the inhibition of cofilin
activity in the Rac1 KO lenses. Such a pathway is likely upregulated as
an adaptive response to the Rac1 deficiency-induced alterations in
actin dynamics and cell mobility in the Rac1 KO lenses. We have not
analyzed the status of Slingshot phosphatase activity, which is
known to dephosphorylate and control cofilin activity (Huang et al.,
2006), in Rac1 cKO lenses.

It is important to note that, in addition to involvement of Rac
GTPase downstream signaling pathways in fiber cell actin dynamics
and migration discussed above, the fact that Rac1 deficient lenses
and Sfrp2 (secreted WNT antagonist) overexpressing lenses (Chen
et al., 2008) appear to share a striking number of abnormalities in-
cluding changes in shape, shortened epithelial sheet length, and ab-
normal fiber cell migration and cytoskeletal organization, further
suggests that Rac1 is also an important component of the WNT/PCP
signaling pathway in the lens.

Another prominent phenotype in the Rac1 deficient lenses was dis-
organization of fiber cells, defective suture formation and disruption of
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the prismoid morphology of fiber cells. Lens suture formation depends
on fiber cell migration, spreading and turnover of cell–cell adhesive in-
teractions at the interface of apical fiber tips and epithelium, the basal
tips of fiber cells and basement membrane of capsule (Kuszak, 2004),
and between the lateral membranes of fiber cells. As discussed above,
in addition to defective fiber cell migration, N-cadherin/β-catenin and
Rap1/Nectin mediated cell–cell interactions were disrupted in the
Rac1 deficient lenses. E-cadherin-based cell–cell junctions regulate
Rac activity (Fukuyama et al., 2006; Kawakatsu et al., 2002; Sander
et al., 1998; Yap and Kovacs, 2003) and activated Rac in turn regulates
actin cytoskeletal interactions with the adherens junctions (Baum and
Georgiou, 2011; Fukata and Kaibuchi, 2001), which are important for
the stabilization of the adherens junctions (Baum and Georgiou, 2011;
Fukata and Kaibuchi, 2001; Halbleib and Nelson, 2006; Hordijk et al.,
1997; Takai et al., 2008). Similarly, Rap1/Nectin, which act upstream
of Rac GTPase, collectively regulate adherens junctions in various
other cell types (Kooistra et al., 2007; Takai et al., 2008). The disruption
of fiber cell organization and hexagonal shape in Rac1 deficient lenses
as assessed by TEM (Fig. 7F) therefore implies that the deficits in N-cad-
herin/β-catenin and Rap1/Nectin mediated cell–cell interactions noted
in these lenses likely compromise lens suture formation and cytoarchi-
tecture. It is not clear however, why and how the levels of Rap1 and
Nectin-1 are decreased in Rac1 KO lenses. It is unlikely that these
changes are secondary to the primary insult since we not only used in-
tact lenses for the analyses but also noted that the Rac1 deficient lenses
derived from the MLR10-Cre mice at P1 did not exhibit the typical sec-
ondary changes such as extensive vacuole accumulation and degenera-
tion of fiber cells, as noted for many types of cataractous lenses (Chen
et al., 2008; Cooper et al., 2008; Simirskii et al., 2007).

The lens capsule is a basement membrane that surrounds and
serves to control the shape, elastic and mechanical properties of the
ocular lens. Additionally, the ECM components of the capsule play a
crucial role in lens epithelial cell proliferation, differentiation, migra-
tion and cell adhesion via engagement of integrin receptors (Danysh
and Duncan, 2009; Menko, 2004). Interestingly, the posterior capsule
was frequently ruptured very early on (embryonic and neonatal) in
the Le-Cre/Rac1 and MLR10/Rac1 cKOs, a phenotype which was
found to be associated with decreased content of specific ECM pro-
teins (Fig. 8). ECM components are produced and secreted by the
lens epithelium and fiber cells (Danysh and Duncan, 2009). It is pos-
sible that the absence of Rac1 GTPase activity results in impaired tran-
scriptional activity and MAP kinase activation, (Coso et al., 1995;
Etienne-Manneville and Hall, 2002; Hill et al., 1995; Minden et al.,
1995) which in turn may be associated with, or partly responsible
for, the altered basement membrane composition in the Rac1 defi-
cient lenses. Indeed Rac GTPase has been shown to regulate the activ-
ity of several different matrix metalloproteases (Engers et al., 2001;
Kheradmand et al., 1998). Therefore, the absence of Rac1 in lens ap-
pears to have a direct influence on ECM turnover. Importantly, ex-
pression of various integrins is downregulated at the level of
protein in these Rac1 deficient lenses. Integrins regulate lens epithe-
lial proliferation, survival and differentiation (Walker and Menko,
2009) and mediate cell adhesive interactions through fiber cell basal
membrane complex and through interactions with epithelial cells
(Bassnett et al., 1999; Simirskii et al., 2007; Walker and Menko,
2009). ECM and integrins regulate Rac GTPase activity and cell adhe-
sive interactions (del Pozo et al., 2000; Hotchin and Hall, 1995; Price
et al., 1998) and conversely, Rac1 and Rap1 control integrin activation
and cell adhesion in certain cell types (D'Souza-Schorey et al., 1998;
Vielkind et al., 2005). Therefore, the changes in the basement mem-
brane protein organization and composition in the Rac1 deficient
mice very likely play a key role in the compromised cell survival
and defective fiber cell migration and suture formation noted in the
Rac1 cKO lenses. Interestingly, although the absolute requirement of
Rac1 in cell migration has remained somewhat questionable (Wells
et al., 2004), Rac1 deficient fiber cells in intact lenses exhibit defective
cell membrane/cytoplasmic extensions required for cell adhesion and
migration, similar to the effects noted in Schwann cells in the periph-
eral nerves (Benninger et al., 2007).

In conclusion, this study uncovers a crucial role for Rac1 GTPase
activity in lens morphogenesis and architecture via regulation of epi-
thelial cell survival, cell cycle progression, fiber cell migration, cell ad-
hesion, and ECM synthesis. Importantly, Rac1 deficiency significantly
impacts lens growth, shape, capsule thickness, cell survival and
cytoarchitecture.

Supplementary materials related to this article can be found on-
line at doi:10.1016/j.ydbio.2011.09.004.
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