260 research outputs found

    A Model for Ferromagnetic Nanograins with Discrete Electronic States

    Full text link
    We propose a simple phenomenological model for an ultrasmall ferromagnetic grain, formulated in terms of the grain's discrete energy levels. We compare the model's predictions with recent measurements of the discrete tunneling spectrum through such a grain. The model can qualitatively account for the observed features if we assume (i) that the anisotropy energy varies among different eigenstates of one grain, and (ii) that nonequilibrium spin accumulation occurs.Comment: 4 pages, 2 figure

    Linear optics substituting scheme for multi-mode operations

    Get PDF
    We propose a scheme allowing a conditional implementation of suitably truncated general single- or multi-mode operators acting on states of traveling optical signal modes. The scheme solely relies on single-photon and coherent states and applies beam splitters and zero- and single-photon detections. The signal flow of the setup resembles that of a multi-mode quantum teleportation scheme thus allowing the individual signal modes to be spatially separated from each other. Some examples such as the realization of cross-Kerr nonlinearities, multi-mode mirrors, and the preparation of multi-photon entangled states are considered.Comment: 11 pages, 4 eps-figures, using revtex

    Conditional linear-optical measurement schemes generate effective photon nonlinearities

    Full text link
    We provide a general approach for the analysis of optical state evolution under conditional measurement schemes, and identify the necessary and sufficient conditions for such schemes to simulate unitary evolution on the freely propagating modes. If such unitary evolution holds, an effective photon nonlinearity can be identified. Our analysis extends to conditional measurement schemes more general than those based solely on linear optics.Comment: 16 pages, 2 figure

    Finite-temperature Fermi-edge singularity in tunneling studied using random telegraph signals

    Full text link
    We show that random telegraph signals in metal-oxide-silicon transistors at millikelvin temperatures provide a powerful means of investigating tunneling between a two-dimensional electron gas and a single defect state. The tunneling rate shows a peak when the defect level lines up with the Fermi energy, in excellent agreement with theory of the Fermi-edge singularity at finite temperature. This theory also indicates that defect levels are the origin of the dissipative two-state systems observed previously in similar devices.Comment: 5 pages, REVTEX, 3 postscript figures included with epsfi

    Low temperature electronic properties of Sr_2RuO_4 III: Magnetic fields

    Full text link
    Based on the microscopic model introduced previously the observed specific heat and ac-susceptibility data in the superconducting phase in Sr_2RuO_4 with applied magnetic fields are described consistently within a phenomenological approach. Discussed in detail are the temperature dependence of the upper critical fields H_{c2} and H_2, the dependence of the upper critical fields on the field direction, the linear specific heat below the superconducting phase transition as a function of field or temperature, the anisotropy of the two spatial components of the order parameter, and the fluctuation field H_p.Comment: 8 pages REVTEX, 4 figure

    Conditional generation of arbitrary multimode entangled states of light with linear optics

    Full text link
    We propose a universal scheme for the probabilistic generation of an arbitrary multimode entangled state of light with finite expansion in Fock basis. The suggested setup involves passive linear optics, single photon sources, strong coherent laser beams, and photodetectors with single-photon resolution. The efficiency of this setup may be greatly enhanced if, in addition, a quantum memory is available.Comment: 7 pages, 5 figure

    Low temperature electronic properties of Sr_2RuO_4 I: Microscopic model and normal state properties

    Full text link
    Starting from the quasi one-dimensional kinetic energy of the d_{yz} and d_{zx} bands we derive a bosonized description of the correlated electron system in Sr_2RuO_4. At intermediate coupling the magnetic correlations have a quasi one-dimensional component along the diagonals of the basal plane of the tetragonal unit cell that accounts for the observed neutron scattering results. Together with two-dimensional correlations the model consistently accounts for the normal phase specific heat, cyclotron mass enhancement, static susceptibility, and Wilson ratio and implies an anomalous high temperature resistivity.Comment: 12 pages REVTEX, 6 figure

    Low temperature electronic properties of Sr_2RuO_4 II: Superconductivity

    Full text link
    The body centered tetragonal structure of Sr_2RuO_4 gives rise to umklapp scattering enhanced inter-plane pair correlations in the d_{yz} and d_{zx} orbitals. Based on symmetry arguments, Hund's rule coupling, and a bosonized description of the in-plane electron correlations the superconducting order parameter is found to be a orbital-singlet spin-triplet with two spatial components. The spatial anisotropy is 7%. The different components of the order parameter give rise to two-dimensional gapless fluctuations. The phase transition is of third order. The temperature dependence of the pair density, specific heat, NQR, Knight shift, and susceptibility are in agreement with experimental results.Comment: 20 pages REVTEX, 3 figure

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters
    corecore