65 research outputs found

    Physico–chemical analysis and Management of different combinations of sugar mill and distillery effluents with different animal dungs during vermicomposting by earthworm Eisenia fetida

    Get PDF
    Sugar mill effluents and distillery effluents are harmful for human health and environment. These effluents are having higher amount of suspended solids, dissolved solids, chloride, sulphate, nitrate, and calcium etc. The vermicomposting is suitable way for proper management of these wastes with the help of earthworm Eisenia fetida. After treatment of different combination of these wastes are uses as initial feed mixture for E. fetida during vermicomposting. The physico-chemical property of different combinations of effluents of sugar mill and distillery with animal dungs was observed before and after vermicomposting. There was significant increase in total kjeldhal nitrogen (TKN) 5.8±0.18 g/kg in cow dung, total available phosphorous (TAP) 12.2±0.16 g/kg in DE, total potassium (TK) 16.3±0.36 g/kg in DE, total calcium (TCa) 3.2±0.2 g/kg in SME+BD level and significant decreased in C:N ratio 76.2±1.26 in DE+CD, total organic carbon (TOC) 139.1.13 g/kg in SME (sugar mill effluents), electrical conductivity (EC) 1.3±0.04 and moisture 52.3±1.26 % relative humidity in CD of final vermicompost with respect to initial feed mixture. The temperature of initial feed mixture was significantly decreased after vermicomposting. The pH of initial feed mixture in all the combinations tends to acidic/ neutral nature. The aim of present study to management of sugar mill effluents and distillery effluents as well as determined the chemical compositions of the different combination beds before and after vermicomposting. Keywords: Sugar mill effluents, Distillery effluents, Animal dungs, Vermicomposting, Eisenia fetida, Physico-chemical analysi

    Single locus genotyping to track Leishmania donovani in the Indian subcontinent: Application in Nepal

    Get PDF
    Background We designed a straightforward method for discriminating circulating Leishmania populations in the Indian subcontinent (ISC). Research on transmission dynamics of visceral leishmaniasis (VL, or Kala-azar) was recently identified as one of the key research priorities for elimination of the disease in the ISC. VL in Bangladesh, India, and Nepal is caused by genetically homogeneous populations of Leishmania donovani parasites, transmitted by female sandflies. Classical methods to study diversity of these protozoa in other regions of the world, such as microsatellite typing, have proven of little use in the area, as they are not able to discriminate most genotypes. Recently, whole genome sequencing (WGS) so far identified 10 different populations termed ISC001-ISC010. Methodology / Principle findings As an alternative to WGS for epidemiological or clinical studies, we designed assays based on PCR amplification followed by dideoxynucleotide sequencing for identification of the nonrecombinant genotypes ISC001 up to ISC007. These assays were applied on 106 parasite isolates collected in Nepal between 2011 and 2014. Combined with data from WGS on strains collected in the period 2002–2011, we provide a proof-of-principle for the application of genotyping to study treatment outcome, and differential geographic distribution. Conclusions / Significance Our method can aid in epidemiological follow-up of visceral leishmaniasis in the Indian subcontinent, a necessity in the frame of the Kala-azar elimination initiative in the region

    A Multi-Country, Single-Blinded, Phase 2 Study to Evaluate a Point-of-Need System for Rapid Detection of Leishmaniasis and Its Implementation in Endemic Settings

    Get PDF
    With the advancement of isothermal nucleic acid amplification techniques, detection of the pathogenic DNA in clinical samples at point-of-need is no longer a dream. The newly developed recombinase polymerase amplification (RPA) assay incorporated in a suitcase laboratory has shown promising diagnostic efficacy over real-time PCR in detection of leishmania DNA from clinical samples. For broader application of this point-of-need system, we undertook a current multi-country diagnostic evaluation study towards establishing this technique in different endemic settings which would be beneficial for the ongoing elimination programs for leishmaniasis. For this study purpose, clinical samples from confirmed visceral leishmaniasis (VL) and post-kala-azar dermal leishmaniasis (PKDL) patients were subjected to both real-time PCR and RPA assay in Bangladesh, India, and Nepal. Further skin samples from confirmed cutaneous leishmaniasis (CL) patients were also included from Sri Lanka. A total of 450 clinical samples from VL patients, 429 from PKDL patients, 47 from CL patients, and 322 from endemic healthy/healthy controls were under investigation to determine the diagnostic efficacy of RPA assay in comparison to real-time PCR. A comparative sensitivity of both methods was found where real-time PCR and RPA assay showed 96.86% (95% CI: 94.45–98.42) and 88.85% (95% CI: 85.08–91.96) sensitivity respectively in the diagnosis of VL cases. This new isothermal method also exhibited promising diagnostic sensitivity (93.50%) for PKDL cases, when a skin sample was used. Due to variation in the sequence of target amplicons, RPA assay showed comparatively lower sensitivity (55.32%) than that of real-time PCR in Sri Lanka for the diagnosis of CL cases. Except for India, the assay presented absolute specificity in the rest of the sites. Excellent concordance between the two molecular methods towards detection of leishmania DNA in clinical samples substantiates the application of RPA assay incorporated in a suitcase laboratory for point-of-need diagnosis of VL and PKDL in low resource endemic settings. However, further improvisation of the method is necessary for diagnosis of CL

    A multicentric evaluation of dipstick test for serodiagnosis of visceral leishmaniasis in India, Nepal, Sri Lanka, Brazil, Ethiopia and Spain

    Get PDF
    Author Correction: A multicentric evaluation of dipstick test for serodiagnosis of visceral leishmaniasis in India, Nepal, Sri Lanka, Brazil, Ethiopia and Spain PMID: 33574485Visceral leishmaniasis (VL) is one of the leading infectious diseases affecting developing countries. Colloidal gold-based diagnostic tests are rapid tools to detect blood/serum antibodies for VL diagnosis. Lack of uniformity in the performance of these tests in different endemic regions is a hurdle in early disease diagnosis. This study is designed to validate a serum-based dipstick test in eight centres of six countries, India, Nepal, Sri Lanka, Brazil, Ethiopia and Spain with archived and fresh sera from 1003 subjects. The dipstick detects antibodies against Leishmania donovani membrane antigens (LAg). The overall sensitivity and specificity of the test with 95% confidence intervals were found to be 97.10% and 93.44%, respectively. The test showed good sensitivity and specificity in the Indian subcontinent (>95%). In Brazil, Ethiopia, and Spain the sensitivity and specificity of the dipstick test (83.78-100% and 79.06-100%) were better as compared to the earlier reports of the performance of rK39 rapid test in these regions. Interestingly, less cross-reactivity was found with the cutaneous form of the disease in Spain, Brazil, and Sri Lanka demonstrating 91.58% specificity. This dipstick test can therefore be a useful tool for diagnosing VL from other symptomatically similar diseases and against cutaneous form of leishmaniasis.S

    Electromagnetic Biostimulation of Living Cultures for Biotechnology, Biofuel and Bioenergy Applications

    Get PDF
    The surge of interest in bioenergy has been marked with increasing efforts in research and development to identify new sources of biomass and to incorporate cutting-edge biotechnology to improve efficiency and increase yields. It is evident that various microorganisms will play an integral role in the development of this newly emerging industry, such as yeast for ethanol and Escherichia coli for fine chemical fermentation. However, it appears that microalgae have become the most promising prospect for biomass production due to their ability to grow fast, produce large quantities of lipids, carbohydrates and proteins, thrive in poor quality waters, sequester and recycle carbon dioxide from industrial flue gases and remove pollutants from industrial, agricultural and municipal wastewaters. In an attempt to better understand and manipulate microorganisms for optimum production capacity, many researchers have investigated alternative methods for stimulating their growth and metabolic behavior. One such novel approach is the use of electromagnetic fields for the stimulation of growth and metabolic cascades and controlling biochemical pathways. An effort has been made in this review to consolidate the information on the current status of biostimulation research to enhance microbial growth and metabolism using electromagnetic fields. It summarizes information on the biostimulatory effects on growth and other biological processes to obtain insight regarding factors and dosages that lead to the stimulation and also what kind of processes have been reportedly affected. Diverse mechanistic theories and explanations for biological effects of electromagnetic fields on intra and extracellular environment have been discussed. The foundations of biophysical interactions such as bioelectromagnetic and biophotonic communication and organization within living systems are expounded with special consideration for spatiotemporal aspects of electromagnetic topology, leading to the potential of multipolar electromagnetic systems. The future direction for the use of biostimulation using bioelectromagnetic, biophotonic and electrochemical methods have been proposed for biotechnology industries in general with emphasis on an holistic biofuel system encompassing production of algal biomass, its processing and conversion to biofuel

    Piloting Upfront Xpert MTB/RIF Testing on Various Specimens under Programmatic Conditions for Diagnosis of TB & DR-TB in Paediatric Population

    Get PDF
    India accounts for one-fifth of the global TB incidence. While the exact burden of childhood TB is not known, TB remains one of the leading causes of childhood mortality in India. Bacteriological confirmation of TB in children is challenging due to difficulty in obtaining quality specimens, in the absence of which diagnosis is largely based on clinical judgement. While testing multiple specimens can potentially contribute to higher proportion of laboratory confirmed paediatric TB cases, lack of high sensitivity tests adds to the diagnostic challenge. We describe here our experiences in piloting upfront Xpert MTB/RIF testing, for diagnosis of TB in paediatric population in respiratory and extra pulmonary specimens, as recently recommended by WHO.Xpert MTB/RIF testing was offered to all paediatric (0-14 years) presumptive TB cases (both pulmonary and extra-pulmonary) seeking care at public and private health facilities in the project areas covering 4 cities of India.Under this pilot project, 8,370 paediatric presumptive TB & presumptive DR-TB cases were tested between April and-November 2014. Overall, 9,149 specimens were tested, of which 4,445 (48.6%) were non-sputum specimens. Xpert MTB/RIF gave 9,083 (99.2%, CI 99.0-99.4) valid results. Of the 8,143 presumptive TB cases enrolled, 517 (6.3%, CI 5.8-6.9) were bacteriologically confirmed. TB detection rates were two fold higher with Xpert MTB/RIF as compared to smear microscopy. Further, a total of 60 rifampicin resistant TB cases were detected, of which 38 were detected among 512 presumptive TB cases while 22 were detected amongst 227 presumptive DR-TB cases tested under the project.Xpert MTB/RIF with advantages of quick turnaround testing-time, high proportion of interpretable results and feasibility of rapid rollout, substantially improved the diagnosis of bacteriologically confirmed TB in children, while simultaneously detecting rifampicin resistance

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    In Vitro Assessment of Antifungal Caspofungin on Leishmania donovani Culture Isolation

    No full text
    Leishmania parasite isolation from the human aspirates is always challenging due to most probability of the fungal contamination and the use of antifungal drug which could support the selective growth of the Leishmania parasite. In this study, we examine the effect of antifungal drug caspofungin on the promastigote stage of Leishmania donovani. Promastigote parasite was cultivated in M199 + 20% heat-inactivated fetal calf serum and plated in 96-well plates. Seven different concentrations of caspofungin (512 µg/ml to 8 µg/ml) were exposed to parasites, and 50% inhibitory concentration (IC50) was calculated. Candida spp. was used in the experiments to know the efficacy of caspofungin to inhibit fungal growth. The IC50 values of Leishmania strains ranged from 23.02 to 155.80 µg/ml (mean 90.25 ± 39.01 µg/ml), and it was significantly higher (P value = 0.02) than IC50 values of Candida spp. (ranged from 0.001 to 0.12 µg/ml, mean = 0.05 ± 0.05 µg/ml). The reduced growth rate of the parasite was found with exposure to 50 µg/ml of caspofungin. Growth inhibition of Leishmania donovani is significantly lower with caspofungin and could be used to protect the parasite cultivation from fungal contamination

    Syntheses of 11β- fluorocholestan-3-one derivatives

    No full text
    1156-1164The stereoselective syntheses of 11β-fluorocholestan-3-one 4 are described starting from enone 1. During this process, hitherto unreported fluoro derivatives 5, 6 of cholestan-3-one have been synthesized. The enones 1, 2 and 3 on treatment with 'FBr' generated in situ from polypyridiniumhydrogenfluoride (PPHF) and N-bromosuccinimide (NBS) followed by tri-n-butyltinhydride give 11β-fluorocholestan-3-one derivatives 5, 6 and 4, respectively. The survival of C-F bond during hydrogenation of 6 in the presence of Wilkinson's catalyst is a significant advantage of this methodology

    Application of PCR and Microscopy to Detect Helicobacter pylori in Gastric Biopsy Specimen among Acid Peptic Disorders at Tertiary Care Centre in Eastern Nepal

    No full text
    Background. Helicobacter pylori infection is most prevalent in developing countries. It is an etiological agent of peptic ulcer, gastric adenocarcinoma, and mucosal-associated lymphoid tissue (MALT) lymphoma. Despite the development of different assays to confirm H. pylori infection, the diagnosis of infection is challenged by precision of the applied assay. Hence, the aim of this study was to understand the diagnostic accuracy of PCR and microscopy to detect the H. pylori in the gastric antrum biopsy specimen from gastric disorder patients. Methods. A total of 52 patients with gastric disorders underwent upper gastrointestinal endoscopy with biopsy. The H. pylori infection in gastric biopsies was identified after examination by microscopy and 23S rRNA specific PCR. The agreement between two test results were analysed by McNemar’s test and Kappa coefficient. Result. H. pylori infection was confirmed in 9 (17.30%) patients by both assays, 6.25% in antral gastritis, 22.22% in gastric ulcer, 100% in gastric ulcer with duodenitis, 50% in gastric ulcer with duodenal ulcer, and 33.33% in severe erosive duodenitis with antral gastritis. Out of nine H. pylori infection confirmed patients, 3 patients were confirmed by microscopy and 8 patients by PCR. In case of two patients, both microscopy and PCR assay confirmed the H. pylori infection. The agreement between two test results was 86.54% and disagreed by 13.46% (p value > 0.05). Conclusion. We found that PCR assay to detect H. pylori is more sensitive than microscopy. However, we advocate for the combination of both assays to increase the strength of diagnostic accuracy due to the absence of the gold standard assay for H. pylori infection
    corecore