288 research outputs found
The spectrum of mild cognitive impairment in dyslipidemic non-elderly type 1 diabetics
Background: Diabetics often have reduced performance in numerous domains of cognitive function, a process termed as Diabetic encephalopathy. The exact pathophysiology of cognitive dysfunction in diabetes is not completely understood, but it is likely that hyperglycaemia, vascular disease, hypoglycemia, and insulin resistance play significant roles. Although cognitive dysfunction is quite common in elderly, however, its occurrence in non-elderly diabetics is not much investigated. Aim of the study was to identify the correlation among various components of lipid profile with mild cognitive impairment in non-elderly type 1 diabetics.Methods: 98 type 1 diabetics were enrolled justifying relevant inclusion &exclusion criteria. Anthropometric indices, biochemical and clinical parameters were measured. MoCA test was employed for the assessment of cognitive dysfunction. Receiver operating characteristic, partial correlation, and logistic regression analyzes were employed for evaluation.Results: 71.42% of enrolled diabetics had some degree of cognitive dysfunction. Duration of the disease had a significant impact on cognitive functioning (p=0.032).Gender, residential area as well as the age of onset of diabetes appeared to have an insignificant impact on cognitive functioning (p>0.05). Diabetics with poor glycemic control were more prone to develop MCI (p<0.001).On comparison of various component of MoCA test; it was seen that most significant parameter that was affected was attention (p<0.001), followed by delayed recall /memory, naming and abstraction (p<0.05).Conclusions: The results of our study suggest that dyslipidemia chiefly raised total cholesterol, triglycerides and LDL is quite common in non-elderly type 1 diabetics and are associated with poorer cognitive function. Cognitive dysfunction should be listed as one of the many complications of diabetes, along with retinopathy, neuropathy, nephropathy, and cardiovascular disease in the future
Effect of Syzygium cumini (jamun) seed powder on dyslipidemia: a double blind randomized control trial
Background: Diabetes is a metabolic syndrome characterized by disturbance in carbohydrate, fat and protein metabolism. Dyslipidemia, commonly associated in diabetes, is major risk factor for macrovascular complications leading to CAD, major contributor to mortality associated with diabetes. Managing DM without side effects is challenge that attracts researchers toward plant based new products. Many studies have found anti-diabetic and anti-hyperlipidemic properties of seeds of Syzygium cumini, attributed to saponins, glycosides and flavonoids. So it should be further explored for its benefits. The aim was to study the effect of jamun seed powder on dyslipidemia in type 2 DM. Methods: Patients with type 2 DM were randomly divided in two groups- group A was supplemented with 10 gms/day jamun seed powder and group B was given placebo powder. Patients and investigators were blinded about treatment allocated. Lipid profile was noted at baseline and 30th, 60th and 90th day. All the data was collected and analyzed at the end of study.Results: Improvement in dyslipidemia was seen after 60 days of supplementation with S. cumini seed powder. Statistically significant decrease in cholesterol levels by 10.55% and 15.79% in mean triglyceride levels by 8.28% and 13.66%, LDL-c levels by 10.29% and 14.50% was noticed at 60th and 90th day, respectively, reduction in VLDL-c levels by 9.38%, 12.90% and 20.69% was noted at 30th, 60th and 90th day. HDL-c increased significantly by 11.11% and 13.89% in males and 10.81% and 16.21% in females after 60 and 90 days of supplementation with S. cumini seed powder.Conclusions: A significant overall effect of S. cumini supplementation was found in improvement of lipid profile in type 2 diabetes subjects. However, above results are seen in small number subjects, further multicenter studies with larger sample size, supplementation dose and time should be planned and its effects in detail should be explored.
Erratum: “Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data” (2019, ApJ, 879, 10)
Due to an error at the publisher, in the published article the number of pulsars presented in the paper is incorrect in multiple places throughout the text. Specifically, "222" pulsars should be "221." Additionally, the number of pulsars for which we have EM observations that fully overlap with O1 and O2 changes from "168" to "167." Elsewhere, in the machine-readable table of Table 1 and in Table 2, the row corresponding to pulsar J0952-0607 should be excised as well. Finally, in the caption for Table 2 the number of pulsars changes from "188" to "187.
GW190412: Observation of a Binary-Black-Hole Coalescence with Asymmetric Masses
We report the observation of gravitational waves from a binary-black-hole coalescence during the first two weeks of LIGO’s and Virgo’s third observing run. The signal was recorded on April 12, 2019 at 05∶30∶44 UTC with a network signal-to-noise ratio of 19. The binary is different from observations during the first two observing runs most notably due to its asymmetric masses: a ∼30 M_⊙ black hole merged with a ∼8 M_⊙ black hole companion. The more massive black hole rotated with a dimensionless spin magnitude between 0.22 and 0.60 (90% probability). Asymmetric systems are predicted to emit gravitational waves with stronger contributions from higher multipoles, and indeed we find strong evidence for gravitational radiation beyond the leading quadrupolar order in the observed signal. A suite of tests performed on GW190412 indicates consistency with Einstein’s general theory of relativity. While the mass ratio of this system differs from all previous detections, we show that it is consistent with the population model of stellar binary black holes inferred from the first two observing runs
Properties and Astrophysical Implications of the 150 M_⊙ Binary Black Hole Merger GW190521
The gravitational-wave signal GW190521 is consistent with a binary black hole (BBH) merger source at redshift 0.8 with unusually high component masses, 85⁺²¹₋₁₄ M_⊙ and 66⁺¹⁷₋₁₈ M_⊙, compared to previously reported events, and shows mild evidence for spin-induced orbital precession. The primary falls in the mass gap predicted by (pulsational) pair-instability supernova theory, in the approximate range 65–120 M_⊙. The probability that at least one of the black holes in GW190521 is in that range is 99.0%. The final mass of the merger 142⁺²⁸₋₁₆ M_⊙) classifies it as an intermediate-mass black hole. Under the assumption of a quasi-circular BBH coalescence, we detail the physical properties of GW190521's source binary and its post-merger remnant, including component masses and spin vectors. Three different waveform models, as well as direct comparison to numerical solutions of general relativity, yield consistent estimates of these properties. Tests of strong-field general relativity targeting the merger-ringdown stages of the coalescence indicate consistency of the observed signal with theoretical predictions. We estimate the merger rate of similar systems to be 0.13_(-0.11)^(+0.30) Gpc⁻³ yr⁻¹. We discuss the astrophysical implications of GW190521 for stellar collapse and for the possible formation of black holes in the pair-instability mass gap through various channels: via (multiple) stellar coalescences, or via hierarchical mergers of lower-mass black holes in star clusters or in active galactic nuclei. We find it to be unlikely that GW190521 is a strongly lensed signal of a lower-mass black hole binary merger. We also discuss more exotic possible sources for GW190521, including a highly eccentric black hole binary, or a primordial black hole binary
Searches for gravitational waves from known pulsars at two harmonics in 2015-2017 LIGO data
International audienceWe present a search for gravitational waves from 222 pulsars with rotation frequencies ≳10 Hz. We use advanced LIGO data from its first and second observing runs spanning 2015–2017, which provides the highest-sensitivity gravitational-wave data so far obtained. In this search we target emission from both the l = m = 2 mass quadrupole mode, with a frequency at twice that of the pulsar’s rotation, and the l = 2, m = 1 mode, with a frequency at the pulsar rotation frequency. The search finds no evidence for gravitational-wave emission from any pulsar at either frequency. For the l = m = 2 mode search, we provide updated upper limits on the gravitational-wave amplitude, mass quadrupole moment, and fiducial ellipticity for 167 pulsars, and the first such limits for a further 55. For 20 young pulsars these results give limits that are below those inferred from the pulsars’ spin-down. For the Crab and Vela pulsars our results constrain gravitational-wave emission to account for less than 0.017% and 0.18% of the spin-down luminosity, respectively. For the recycled millisecond pulsar J0711−6830 our limits are only a factor of 1.3 above the spin-down limit, assuming the canonical value of 1038 kg m2 for the star’s moment of inertia, and imply a gravitational-wave-derived upper limit on the star’s ellipticity of 1.2 × 10−8. We also place new limits on the emission amplitude at the rotation frequency of the pulsars
GW190425 : observation of a compact binary coalescence with total mass ~ 3.4 M o
On 2019 April 25, the LIGO Livingston detector observed a compact binary coalescence with signal-to-noise ratio 12.9. The Virgo detector was also taking data that did not contribute to detection due to a low signal-to-noise ratio, but were used for subsequent parameter estimation. The 90% credible intervals for the component masses range from to if we restrict the dimensionless component spin magnitudes to be smaller than 0.05). These mass parameters are consistent with the individual binary components being neutron stars. However, both the source-frame chirp mass and the total mass of this system are significantly larger than those of any other known binary neutron star (BNS) system. The possibility that one or both binary components of the system are black holes cannot be ruled out from gravitational-wave data. We discuss possible origins of the system based on its inconsistency with the known Galactic BNS population. Under the assumption that the signal was produced by a BNS coalescence, the local rate of neutron star mergers is updated to 250-2810
Diving below the spin-down limit:constraints on gravitational waves from the energetic young pulsar PSR J0537-6910
We present a search for continuous gravitational-wave signals from the young, energetic X-ray pulsar PSR J0537-6910 using data from the second and third observing runs of LIGO and Virgo. The search is enabled by a contemporaneous timing ephemeris obtained using NICER data. The NICER ephemeris has also been extended through 2020 October and includes three new glitches. PSR J0537-6910 has the largest spin-down luminosity of any pulsar and is highly active with regards to glitches. Analyses of its long-term and inter-glitch braking indices provided intriguing evidence that its spin-down energy budget may include gravitational-wave emission from a time-varying mass quadrupole moment. Its 62 Hz rotation frequency also puts its possible gravitational-wave emission in the most sensitive band of LIGO/Virgo detectors. Motivated by these considerations, we search for gravitational-wave emission at both once and twice the rotation frequency. We find no signal, however, and report our upper limits. Assuming a rigidly rotating triaxial star, our constraints reach below the gravitational-wave spin-down limit for this star for the first time by more than a factor of two and limit gravitational waves from the l = m = 2 mode to account for less than 14% of the spin-down energy budget. The fiducial equatorial ellipticity is limited to less than about 3 x 10⁻⁵, which is the third best constraint for any young pulsar
Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo
We present the results of targeted searches for gravitational-wave transients associated with gamma-ray bursts during the second observing run of Advanced LIGO and Advanced Virgo, which took place from 2016 November to 2017 August. We have analyzed 98 gamma-ray bursts using an unmodeled search method that searches for generic transient gravitational waves and 42 with a modeled search method that targets compact-binary mergers as progenitors of short gamma-ray bursts. Both methods clearly detect the previously reported binary merger signal GW170817, with p-values of <9.38 × 10−6 (modeled) and 3.1 × 10−4 (unmodeled). We do not find any significant evidence for gravitational-wave signals associated with the other gamma-ray bursts analyzed, and therefore we report lower bounds on the distance to each of these, assuming various source types and signal morphologies. Using our final modeled search results, short gamma-ray burst observations, and assuming binary neutron star progenitors, we place bounds on the rate of short gamma-ray bursts as a function of redshift for z ≤ 1. We estimate 0.07─1.80 joint detections with Fermi-GBM per year for the 2019─20 LIGO-Virgo observing run and 0.15─3.90 per year when current gravitational-wave detectors are operating at their design sensitivities
- …