721 research outputs found
Dynamic spin Jahn-Teller effect in small magnetic clusters
We study the effect of spin-phonon coupling in small magnetic clusters,
concentrating on a S=1/2 ring of 4 spins coupled antiferromagnetically. If the
phonons are treated as classical variables, there is a critical value of the
spin-phonon coupling above which a static distortion occurs. This is a good
approximation if the zero point energy is small compared to the energy gain due
to the distortion, which is true for large exchange interactions compared to
the phonons energy (). In the opposite limit, one can
integrate out the phonon degrees of freedom and get an effective spin
hamiltonian. Using exact diagonalizations to include the quantum nature of both
spins and phonons, we obtain the spectrum in the whole range of parameters and
explicit the crossover between the classical and quantum regimes. We then
establish quantitatively the limits of validity of two widely used approaches
(one in the quantum and one in the classical limits) and show that they are
quite poor for small magnetic clusters. We also show that upon reducing
the first excitation of a 4-site cluster becomes a singlet, a
result that could be relevant for CuTeOBr
On X-ray-singularities in the f-electron spectral function of the Falicov-Kimball model
The f-electron spectral function of the Falicov-Kimball model is calculated
within the dynamical mean-field theory using the numerical renormalization
group method as the impurity solver. Both the Bethe lattice and the hypercubic
lattice are considered at half filling. For small U we obtain a single-peaked
f-electron spectral function, which --for zero temperature-- exhibits an
algebraic (X-ray) singularity () for . The
characteristic exponent depends on the Coulomb (Hubbard) correlation
U. This X-ray singularity cannot be observed when using alternative
(Keldysh-based) many-body approaches. With increasing U, decreases and
vanishes for sufficiently large U when the f-electron spectral function
develops a gap and a two-peak structure (metal-insulator transition).Comment: 8 pages, 8 figures, revte
Thermodynamic properties of the two-dimensional S=1/2 Heisenberg antiferromagnet coupled to bond phonons
By applying a quantum Monte Carlo procedure based on the loop algorithm we
investigate thermodynamic properties of the two-dimensional antiferromagnetic
S=1/2 Heisenberg model coupled to Einstein phonons on the bonds. The
temperature dependence of the magnetic susceptibility, mean phonon occupation
numbers and the specific heat are discussed in detail. We study the spin
correlation function both in the regime of weak and strong spin phonon coupling
(coupling constants g=0.1, w=8J and g=2, w=2J, respectively). A finite size
scaling analysis of the correlation length indicates that in both cases long
range Neel order is established in the ground state.Comment: 10 pages, 13 figure
Tracking spin and charge with spectroscopy in spin-polarised 1D systems
We calculate the spectral function of a one-dimensional strongly interacting
chain of fermions, where the response can be well understood in terms of spinon
and holon excitations. Upon increasing the spin imbalance between the spin
species, we observe the single-electron response of the fully polarised system
to emanate from the holon peak while the spinon response vanishes. For
experimental setups that probe one-dimensional properties, we propose this
method as an additional generic tool to aid the identification of spectral
structures, e.g. in ARPES measurements. We show that this applies even to
trapped systems having cold atomic gas experiments in mind.Comment: 5 pages, 4 figure
Kinks in the electronic dispersion of the Hubbard model away from half filling
We study kinks in the electronic dispersion of a generic strongly correlated
system by dynamic mean-field theory (DMFT). The focus is on doped systems away
from particle-hole symmetry where valence fluctuations matter potentially.
Three different algorithms are compared to asses their strengths and
weaknesses, as well as to clearly distinguish physical features from
algorithmic artifacts. Our findings extend a view previously established for
half-filled systems where kinks reflect the coupling of the fermionic
quasiparticles to emergent collective modes, which are identified here as spin
fluctuations. Kinks are observed when strong spin fluctuations are present and,
additionally, a separation of energy scales for spin and charge excitations
exists. Both criteria are met by strongly correlated systems close to a
Mott-insulator transition. The energies of the kinks and their doping
dependence fit well to the kinks in the cuprates, which is surprising in view
of the spatial correlations neglected by DMFT.Comment: 13 pages, 15 figure
Density-matrix renormalisation group approach to quantum impurity problems
A dynamic density-matrix renormalisation group approach to the spectral
properties of quantum impurity problems is presented. The method is
demonstrated on the spectral density of the flat-band symmetric single-impurity
Anderson model. We show that this approach provides the impurity spectral
density for all frequencies and coupling strengths. In particular, Hubbard
satellites at high energy can be obtained with a good resolution. The main
difficulties are the necessary discretisation of the host band hybridised with
the impurity and the resolution of sharp spectral features such as the
Abrikosov-Suhl resonance.Comment: 16 pages, 6 figures, submitted to Journal of Physics: Condensed
Matte
The rate of adaptive molecular evolution in wild and domesticated Saccharomyces cerevisiae populations
Through its fermentative capacities, Saccharomyces cerevisiae was central in the development of civilisation during the Neolithic period, and the yeast remains of importance in industry and biotechnology, giving rise to bona fide domesticated populations. Here, we conduct a population genomic study of domesticated and wild populations of S. cerevisiae. Using coalescent analyses, we report that the effective population size of yeast populations decreased since the divergence with S. paradoxus. We fitted models of distributions of fitness effects to infer the rate of adaptive (ωa) and non-adaptive (ωna) non-synonymous substitutions in protein-coding genes. We report an overall limited contribution of positive selection to S. cerevisiae protein evolution, albeit with higher rates of adaptive evolution in wild compared to domesticated populations. Our analyses revealed the signature of background selection and possibly Hill–Robertson interference, as recombination was found to be negatively correlated with ωna and positively correlated with ωa. However, the effect of recombination on ωa was found to be labile, as it is only apparent after removing the impact of codon usage bias on the synonymous site frequency spectrum and disappears if we control for the correlation with ωna, suggesting that it could be an artefact of the decreasing population size. Furthermore, the rate of adaptive non-synonymous substitutions is significantly correlated with the residue solvent exposure, a relation that cannot be explained by the population's demography. Together, our results provide a detailed characterisation of adaptive mutations in protein-coding genes across S. cerevisiae populations
Alu-Alu Recombination Underlying the First Large Genomic Deletion in GlcNAc-Phosphotransferase Alpha/Beta (GNPTAB) Gene in a MLII Alpha/Beta Patient
Mucolipidosis type II α/β is a severe, autosomal recessive lysosomal storage disorder, caused by a defect in the GNPTAB gene that codes for the α/β subunits of the GlcNAc-phosphotransferase. To date, over 100 different mutations have been identified in MLII α/β patients, but no large deletions have been reported. Here we present the first case of a large homozygous intragenic GNPTAB gene deletion (c.3435-386_3602 + 343del897) encompassing exon 19, identified in a ML II α/β patient. Long-range PCR and sequencing methodologies were used to refine the characterization of this rearrangement, leading to the identification of a 21 bp repetitive motif in introns 18 and 19. Further analysis revealed that both the 5' and 3' breakpoints were located within highly homologous Alu elements (Alu-Sz in intron 18 and Alu-Sq2, in intron 19), suggesting that this deletion has probably resulted from Alu-Alu unequal homologous recombination. RT-PCR methods were used to further evaluate the consequences of the alteration for the processing of the mutant pre mRNA GNPTAB, revealing the production of three abnormal transcripts: one without exon 19 (p.Lys1146_Trp1201del); another with an additional loss of exon 20 (p.Arg1145Serfs*2), and a third in which exon 19 was substituted by a pseudoexon inclusion consisting of a 62 bp fragment from intron 18 (p.Arg1145Serfs*16). Interestingly, this 62 bp fragment corresponds to the Alu-Sz element integrated in intron 18.This represents the first description of a large deletion identified in the GNPTAB gene and contributes to enrich the knowledge on the molecular mechanisms underlying causative mutations in ML II.This work was supported by FCT - project PIC/IC/83252/2007 (http://alfa.fct.mctes.pt/). Coutinho MF and Quental S received grants from the FCT (SFRH/BD/48103/2008; SFRH/BPD/64025/2009)
Inclusive search for same-sign dilepton signatures in pp collisions at root s=7 TeV with the ATLAS detector
An inclusive search is presented for new physics in events with two isolated leptons (e or mu) having the same electric charge. The data are selected from events collected from p p collisions at root s = 7 TeV by the ATLAS detector and correspond to an integrated luminosity of 34 pb(-1). The spectra in dilepton invariant mass, missing transverse momentum and jet multiplicity are presented and compared to Standard Model predictions. In this event sample, no evidence is found for contributions beyond those of the Standard Model. Limits are set on the cross-section in a fiducial region for new sources of same-sign high-mass dilepton events in the ee, e mu and mu mu channels. Four models predicting same-sign dilepton signals are constrained: two descriptions of Majorana neutrinos, a cascade topology similar to supersymmetry or universal extra dimensions, and fourth generation d-type quarks. Assuming a new physics scale of 1 TeV, Majorana neutrinos produced by an effective operator V with masses below 460 GeV are excluded at 95% confidence level. A lower limit of 290 GeV is set at 95% confidence level on the mass of fourth generation d-type quarks
Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV
A measurement of the production cross-section for top quark pairs(\ttbar)
in collisions at \sqrt{s}=7 \TeV is presented using data recorded with
the ATLAS detector at the Large Hadron Collider. Events are selected in two
different topologies: single lepton (electron or muon ) with large
missing transverse energy and at least four jets, and dilepton (,
or ) with large missing transverse energy and at least two jets. In a
data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton
topology and 9 events in the dilepton topology. The corresponding expected
backgrounds from non-\ttbar Standard Model processes are estimated using
data-driven methods and determined to be events and events, respectively. The kinematic properties of the selected events are
consistent with SM \ttbar production. The inclusive top quark pair production
cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where
the first uncertainty is statistical and the second systematic. The measurement
agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables,
CERN-PH number and final journal adde
- …
