193 research outputs found

    Identification of an Emergent and Atypical Pseudomonas viridiflava Lineage Causing Bacteriosis in Plants of Agronomic Importance in a Spanish Region

    Get PDF
    Pseudomonas strains with an atypical LOPAT profile (where LOPAT is a series of determinative tests: L, levan production; O, oxidase production; P, pectinolitic activity; A, arginine dihydrolase production; and T, tobacco hypersensibility) can be regarded as emergent pathogens in the Principality of Asturias (Spain), where they have been causing, since 1999, severe damage in at least three taxonomically unrelated orchard plants of agronomic importance: common bean (Phaseolus vulgaris), kiwifruit (Actinidia deliciosa), and lettuce (Lactuca sativa). These strains are mainly differentiated by production of yellowish mucoid material in hypersucrose medium, used for the levan test, and by a variable pectinolytic activity on different potato varieties. The atypical organisms were identified as Pseudomonas viridiflava based on their 16S rRNA sequences. Among them a certain intraspecies genetic heterogeneity was detected by randomly amplified polymorphic DNA (RAPD) typing. To differentiate between isolates of P. viridiflava and Pseudomonas syringae pathovars, a 16S ribosomal DNA restriction fragment length polymorphism method employing the restriction endonucleases SacI and HinfI was developed. This could be used as a means of reliable species determination after the usual phenotypical characterization, which includes the LOPAT tests

    Las malas hierbas contribuyen a la supervivencia de algunas bacterias fitopatógenas

    Get PDF
    En Asturias es muy frecuente que las malas hierbas acompañen a nuestros cultivos, por lo que, para controlarlas, es imprescindible realizar labores de escarda. En el Laboratorio de Fitopatología del SERIDA se encontraron bacterias patógenas de la judía en algunas malas hierbas, que constituyen una fuente de inóculo y un reservorio que permite sobrevivir a la bacteria cuando no hay cultivo

    Cholecystokinin in the central nervous system of the sea lamprey Petromyzon marinus: precursor identification and neuroanatomical relationships with other neuronal signalling systems

    Get PDF
    Cholecystokinin (CCK) is a neuropeptide that modulates processes such as digestion, satiety, and anxiety. CCK-type peptides have been characterized in jawed vertebrates and invertebrates, but little is known about CCK-type signalling in the most ancient group of vertebrates, the agnathans. Here, we have cloned and sequenced a cDNA encoding a sea lamprey (Petromyzon marinus L.) CCK-type precursor (PmCCK), which contains a CCK-type octapeptide sequence (PmCCK-8) that is highly similar to gnathostome CCKs. Using mRNA in situ hybridization, the distribution of PmCCK-expressing neurons was mapped in the CNS of P. marinus. This revealed PmCCK-expressing neurons in the hypothalamus, posterior tubercle, prethalamus, nucleus of the medial longitudinal fasciculus, midbrain tegmentum, isthmus, rhombencephalic reticular formation, and the putative nucleus of the solitary tract. Some PmCCK-expressing neuronal populations were only observed in adults, revealing important differences with larvae. We generated an antiserum to PmCCK-8 to enable immunohistochemical analysis of CCK expression, which revealed that GABA or glutamate, but not serotonin, tyrosine hydroxylase or neuropeptide Y, is co-expressed in some PmCCK-8-immunoreactive (ir) neurons. Importantly, this is the first demonstration of co-localization of GABA and CCK in neurons of a non-mammalian vertebrate. We also characterized extensive cholecystokinergic fibre systems of the CNS, including innervation of habenular subnuclei. A conspicuous PmCCK-8-ir tract ascending in the lateral rhombencephalon selectively innervates a glutamatergic population in the dorsal isthmic grey. Interestingly, this tract is reminiscent of the secondary gustatory/visceral tract of teleosts. In conclusion, this study provides important new information on the evolution of the cholecystokinergic system in vertebrates.</p

    Diversity of Plasmids Encoding Virulence and Resistance Functions in Salmonella enterica subsp. enterica Serovar Typhimurium Monophasic Variant 4,[5],12:i:- Strains Circulating in Europe.

    Get PDF
    Plasmids encoding resistance and virulence properties in multidrug resistant (MDR) Salmonella enterica (S.) serovar Typhimurium monophasic variant 4,[5],12:i:- isolates recovered from pigs and humans (2006-2008) in Europe were characterised. The isolates were selected based on the detection by PCR-amplification of S. Typhimurium virulence plasmid pSLT genes and were analysed by multi-locus sequence typing (MLST). The resistance genes present in the isolates and the association of these genes with integrons, transposons and insertion sequences were characterised by PCR-sequencing, and their plasmid location was determined by alkaline lysis and by S1-nuclease pulsed-field gel electrophoresis (PFGE) Southern-blot hybridisation. Plasmids were further analysed by replicon typing, plasmid MLST and conjugation experiments. The 10 S. 4,[5],12,i:- selected isolates belonged to ST19. Each isolate carried a large plasmid in which MDR with pSLT-associated virulence genes were located. After analysis, eight different plasmids of three incompatibility groups (IncA/C, IncR and IncF) were detected. Two IncA/C plasmids represented novel variants within the plasmid family of the S. 4,[5],12:i:- Spanish clone, and carried an empty class 1 integron with a conventional qacE¿1-sul1 3' conserved segment or an In-sul3 type III with estX-psp-aadA2-cmlA1-aadA1-qacH variable region linked to tnpA440-sul3, part of Tn2, Tn21 and Tn1721 transposons, and ISCR2. Four newly described IncR plasmids contained the resistance genes within In-sul3 type I (dfrA12-orfF-aadA2-cmlA1-aadA1-qacH/tnpA440-sul3) and part of Tn10 [tet(B)]. Two pSLT-derivatives with FIIs-ST1+FIB-ST17 replicons carried cmlA1-[aadA1-aadA2]-sul3-dfrA12 and blaTEM-1 genes linked to an In-sul3 type I integron and to Tn2, respectively. In conclusion, three emerging European clones of S. 4,[5],12:i:- harboured MDR plasmids encoding additional virulence functions that could contribute significantly to their evolutionary success

    A randomized controlled trial of mycophenolate mofetil in patients with IgA nephropathy [ISRCTN62574616]

    Get PDF
    BACKGROUND: IgAN is the most common type of glomerulonephritis in the world. Between 15 and 40 percent of adults and children diagnosed with IgAN eventually progress to ESRD. Despite the need for effective treatment strategies, very few RCTs for IgAN have been performed. The most effective therapies for IgAN appear to be corticosteroids, ACEi, and FOS that contain a high concentration of omega 3 fatty acids. While ACEi and FOS are generally well tolerated with minimal side effects, the use of high dose steroids over a long course of therapy is often associated with significant morbidity. OBJECTIVE OF THE STUDY: The objective of the study is to test the hypothesis that treatment with the immunosuppressive agent, MMF, will lead to significant and sustained improvement in urinary protein excretion in patients with IgAN who have been pre-treated (and continue to be treated) with ACE(i )and FOS compared to a placebo control group of patients receiving comparable doses of ACEi and FOS without MMF. DESIGN: After a three month treatment period with the ACEi, lisinopril and the FOS, Omacor(®), 100 (2 × 50) patients with IgAN and a urinary P/C ratio ≥ 0.6 (males) and ≥ 0.8 (females) and an estGFR ≥ 40 ml/min/1.73 m2 will be randomized to treatment with either MMF or placebo for one year. All patients will be followed off study drug for a second year, but will continue treatment with lisinopril and Omacor(® )for the two year duration of the study. The primary outcome measure of change in urine P/C ratio will be assessed at the end of years one and two

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London
    corecore