92 research outputs found

    Influence of rainfall on the discharge, nutrient concentrations and loads of a stream of the "Pampa Ondulada" (Buenos Aires, Argentina)

    Get PDF
    The basin area of the Durazno Stream covers approx. 360 km2 of a plain with a gentle slope, mainly devoted to cattle farming and agriculture. This study examines the variability of chemical composition of surface water of the stream in relation to stream discharge, estimated from a hydrological deterministic model from rainfall data. Fifteen samplings were carried out, four in high flow condition and the rest in baseline flow. In each sampling, the main physico-chemical variables were determined. Since discharge data from this stream were not available, it was estimated in situ through an instantaneous unitary hydrograph model. Both estimations of stream discharge were similar. The main forms of dissolved inorganic nitrogen were ammonium and nitrate. The four significant components of PCA that explained 84.4 % of total variance were: mineral component, particulate matter content, ammonium and dissolved phosphorus levels, and nitrates' level. The decreased concentrations of major ions and conductivity during high flow condition suggest solutes' dilution by the massive inflow of water originated by rainfalls. The highest concentrations and loads of suspended solids (SS) (86 mg/l and 22638 kg/day) and particulate organic carbon (POC) (3.1 mg/l and 832 kg/day) were observed in the sample obtained during the rising limb of the hydrograph following a drought period, suggesting that basin erosive processes are more important during the first hours of the storm. Three of the samplings that were carried out in high flow conditions showed low mineral and nutrient content that revealed better water quality. In contrast, the sampling with the greatest total runoff (14.1 mm) showed high concentrations of ammonium (1205 μg/l) and dissolved phosphorus (561 μg/l), suggesting that a long stagnant period on soils with low permeability, could favor reduction processes of nitrate to ammonium and mobilization of dissolved phosphorus to overlying water. The nutrients' loads increased in high flow conditions most likely due to runoff from the riverbank soils. The rise of nutrients, SS, POC and total organic carbon (TOC), loads in the same or in higher proportion than the stream discharge, alerts on the risk of contamination of surface water in an agricultural basin.La cuenca del Arroyo Durazno abarca aproximadamente 360 km2 de una llanura con suave pendiente, dedicada principalmente a ganadería y agricultura. Este estudio examina la variabilidad en la composición química del agua superficial del arroyo en relación con el caudal estimado a través de un modelo hidrológico determinístico a partir de los datos de lluvia. Se realizaron quince muestreos: cuatro en condiciones de alto caudal, los restantes en caudal base. En cada muestreo se determinaron las principales variables fisico-químicas. Dado que no existen datos publicados de caudal de este arroyo, se lo estimó in situ, y a partir del modelo de hidrograma unitario. Ambas estimaciones resultaron similares. Las principales formas de nitrógeno inorgánico disuelto fueron amonio y nitrato. Los primeros 4 factores extraídos del PCA que explicaron 84.4 % de la varianza total fueron: componente mineral, contenido de material particulado, niveles de amonio y fósforo disuelto y nivel de nitratos. El decrecimiento de iones mayoritarios y conductividad durante las condiciones de alto caudal sugiere su dilución por la entrada masiva de agua por lluvias. Las mayores concentraciones y cargas de sólidos suspendidos (SS) (86 mg/l y 22638 kg/día) y carbono orgánico particulado (COP) (3.1 mg/l y 832 kg/día) se hallaron en el muestreo realizado durante la rama ascendente del hidrograma posterior a un período de sequía, sugiriendo que los procesos erosivos de la cuenca son más importantes en las primeras horas de la tormenta. Tres de los muestreos realizados en condiciones de alto caudal presentaron bajo contenido mineral y de nutrientes, indicando mejor calidad de agua. En cambio en el muestreo de mayor lámina de escorrentía acumulada (14.1 mm) las concentraciones de amonio (1205μg/l) y fósforo disuelto (561μg/l) fueron elevadas, sugiriendo que un prolongado periodo de estancamiento en un suelo de baja permeabilidad favorecería los procesos de reducción de nitratos a amonio y la movilización de fósforo disuelto al agua de inundación. Las cargas de nutrientes aumentaron en condiciones de alto caudal probablemente debido al aporte por escorrentía de suelos ribereños. El ascenso en las cargas de nutrientes, SS, COP y carbono orgánico total en igual o mayor magnitud que el caudal alerta sobre el riesgo de contaminación de las aguas superficiales en una cuenca agrícola

    Air ambulance services in the Arctic 1999-2009 : a Norwegian study.

    Get PDF
    Air ambulance services in the Arctic have to deal with remote locations, long distances, rough weather conditions and seasonable darkness. Despite these challenges, the people living in the area expect a high quality of specialist health care. The objective of this study was to analyse the air ambulance operations performed in the Norwegian Arctic and study variations in diagnoses and flight patterns around the year. A retrospective analysis. All air ambulance operations performed during the time 1999 – 2009 period were analysed. The subjects were patients transported and flights performed. The primary outcome measures were patients’ diagnoses and task patterns around the year. A total of 345 patients were transported and 321 flights performed. Coronary heart and vascular disease, bone fractures and infections were the most common diagnoses. Most patients (85%) had NACA score 3 or 4. Half of all fractures occurred in April and August. Most patients were males (66%), and one fourth was not Norwegian. The median flying time (one way) was 3 h 33 m. Ten percent of the flights were delayed, and only 14% were performed between midnight and 8.00 AM. The period April to August was the busiest one (58% of operations). Norway has run a safe air ambulance service in the Arctic for the last 11 years. In the future more shipping and polar adventure operations may influence the need for air ambulances, especially during summer and autumn

    Epstein-Barr Virus Evades CD4+ T Cell Responses in Lytic Cycle through BZLF1-mediated Downregulation of CD74 and the Cooperation of vBcl-2

    Get PDF
    Evasion of immune T cell responses is crucial for viruses to establish persistence in the infected host. Immune evasion mechanisms of Epstein-Barr virus (EBV) in the context of MHC-I antigen presentation have been well studied. In contrast, viral interference with MHC-II antigen presentation is less well understood, not only for EBV but also for other persistent viruses. Here we show that the EBV encoded BZLF1 can interfere with recognition by immune CD4+ effector T cells. This impaired T cell recognition occurred in the absence of a reduction in the expression of surface MHC-II, but correlated with a marked downregulation of surface CD74 on the target cells. Furthermore, impaired CD4+ T cell recognition was also observed with target cells where CD74 expression was downregulated by shRNA-mediated inhibition. BZLF1 downregulated surface CD74 via a post-transcriptional mechanism distinct from its previously reported effect on the CIITA promoter. In addition to being a chaperone for MHC-II αβ dimers, CD74 also functions as a surface receptor for macrophage Migration Inhibitory Factor and enhances cell survival through transcriptional upregulation of Bcl-2 family members. The immune-evasion function of BZLF1 therefore comes at a cost of induced toxicity. However, during EBV lytic cycle induced by BZLF1 expression, this toxicity can be overcome by expression of the vBcl-2, BHRF1, at an early stage of lytic infection. We conclude that by inhibiting apoptosis, the vBcl-2 not only maintains cell viability to allow sufficient time for synthesis and accumulation of infectious virus progeny, but also enables BZLF1 to effect its immune evasion function

    Human Cytomegalovirus UL18 Utilizes US6 for Evading the NK and T-Cell Responses

    Get PDF
    Human cytomegalovirus (HCMV) US6 glycoprotein inhibits TAP function, resulting in down-regulation of MHC class I molecules at the cell surface. Cells lacking MHC class I molecules are susceptible to NK cell lysis. HCMV expresses UL18, a MHC class I homolog that functions as a surrogate to prevent host cell lysis. Despite a high level of sequence and structural homology between UL18 and MHC class I molecules, surface expression of MHC class I, but not UL18, is down regulated by US6. Here, we describe a mechanism of action by which HCMV UL18 avoids attack by the self-derived TAP inhibitor US6. UL18 abrogates US6 inhibition of ATP binding by TAP and, thereby, restores TAP-mediated peptide translocation. In addition, UL18 together with US6 interferes with the physical association between MHC class I molecules and TAP that is required for optimal peptide loading. Thus, regardless of the recovery of TAP function, surface expression of MHC class I molecules remains decreased. UL18 represents a unique immune evasion protein that has evolved to evade both the NK and the T cell immune responses

    Neuromuscular Consequences of an Extreme Mountain Ultra-Marathon

    Get PDF
    We investigated the physiological consequences of one of the most extreme exercises realized by humans in race conditions: a 166-km mountain ultra-marathon (MUM) with 9500 m of positive and negative elevation change. For this purpose, (i) the fatigue induced by the MUM and (ii) the recovery processes over two weeks were assessed. Evaluation of neuromuscular function (NMF) and blood markers of muscle damage and inflammation were performed before and immediately following (n = 22), and 2, 5, 9 and 16 days after the MUM (n = 11) in experienced ultra-marathon runners. Large maximal voluntary contraction decreases occurred after MUM (−35% [95% CI: −28 to −42%] and −39% [95% CI: −32 to −46%] for KE and PF, respectively), with alteration of maximal voluntary activation, mainly for KE (−19% [95% CI: −7 to −32%]). Significant modifications in markers of muscle damage and inflammation were observed after the MUM as suggested by the large changes in creatine kinase (from 144±94 to 13,633±12,626 UI L−1), myoglobin (from 32±22 to 1,432±1,209 µg L−1), and C-Reactive Protein (from <2.0 to 37.7±26.5 mg L−1). Moderate to large reductions in maximal compound muscle action potential amplitude, high-frequency doublet force, and low frequency fatigue (index of excitation-contraction coupling alteration) were also observed for both muscle groups. Sixteen days after MUM, NMF had returned to initial values, with most of the recovery process occurring within 9 days of the race. These findings suggest that the large alterations in NMF after an ultra-marathon race are multi-factorial, including failure of excitation-contraction coupling, which has never been described after prolonged running. It is also concluded that as early as two weeks after such an extreme running exercise, maximal force capacities have returned to baseline

    Сетевая система контроля технологического процесса выращивания полупроводниковых кристаллов и тонких пленок

    Get PDF
    Экспериментальное моделирование аппаратно-программного обеспечения показало достаточную надежность работы системы и значительное уменьшение трудоемкости контроля и управления параметрами технологического процесса

    Cytomegalovirus infection in pediatric rheumatic diseases: a review

    Get PDF
    Human cytomegalovirus (HCMV) is familiar to pediatric rheumatologists mainly as a cause of opportunistic disease in pharmacologically immune suppressed patients. However, HCMV also has a variety of immuno-modulatory effects, through which it may influence the course of rheumatic conditions. In this article we discuss the interplay between HCMV and the immune system, and review the clinical manifestations, diagnosis, and treatment of HCMV infection in children with rheumatic disease

    Varicellovirus UL49.5 Proteins Differentially Affect the Function of the Transporter Associated with Antigen Processing, TAP

    Get PDF
    Cytotoxic T-lymphocytes play an important role in the protection against viral infections, which they detect through the recognition of virus-derived peptides, presented in the context of MHC class I molecules at the surface of the infected cell. The transporter associated with antigen processing (TAP) plays an essential role in MHC class I–restricted antigen presentation, as TAP imports peptides into the ER, where peptide loading of MHC class I molecules takes place. In this study, the UL49.5 proteins of the varicelloviruses bovine herpesvirus 1 (BHV-1), pseudorabies virus (PRV), and equine herpesvirus 1 and 4 (EHV-1 and EHV-4) are characterized as members of a novel class of viral immune evasion proteins. These UL49.5 proteins interfere with MHC class I antigen presentation by blocking the supply of antigenic peptides through inhibition of TAP. BHV-1, PRV, and EHV-1 recombinant viruses lacking UL49.5 no longer interfere with peptide transport. Combined with the observation that the individually expressed UL49.5 proteins block TAP as well, these data indicate that UL49.5 is the viral factor that is both necessary and sufficient to abolish TAP function during productive infection by these viruses. The mechanisms through which the UL49.5 proteins of BHV-1, PRV, EHV-1, and EHV-4 block TAP exhibit surprising diversity. BHV-1 UL49.5 targets TAP for proteasomal degradation, whereas EHV-1 and EHV-4 UL49.5 interfere with the binding of ATP to TAP. In contrast, TAP stability and ATP recruitment are not affected by PRV UL49.5, although it has the capacity to arrest the peptide transporter in a translocation-incompetent state, a property shared with the BHV-1 and EHV-1 UL49.5. Taken together, these results classify the UL49.5 gene products of BHV-1, PRV, EHV-1, and EHV-4 as members of a novel family of viral immune evasion proteins, inhibiting TAP through a variety of mechanisms

    Herpes Virus Fusion and Entry: A Story with Many Characters

    Get PDF
    Herpesviridae comprise a large family of enveloped DNA viruses all of whom employ orthologs of the same three glycoproteins, gB, gH and gL. Additionally, herpesviruses often employ accessory proteins to bind receptors and/or bind the heterodimer gH/gL or even to determine cell tropism. Sorting out how these proteins function has been resolved to a large extent by structural biology coupled with supporting biochemical and biologic evidence. Together with the G protein of vesicular stomatitis virus, gB is a charter member of the Class III fusion proteins. Unlike VSV G, gB only functions when partnered with gH/gL. However, gH/gL does not resemble any known viral fusion protein and there is evidence that its function is to upregulate the fusogenic activity of gB. In the case of herpes simplex virus, gH/gL itself is upregulated into an active state by the conformational change that occurs when gD, the receptor binding protein, binds one of its receptors. In this review we focus primarily on prototypes of the three subfamilies of herpesviruses. We will present our model for how herpes simplex virus (HSV) regulates fusion in series of highly regulated steps. Our model highlights what is known and also provides a framework to address mechanistic questions about fusion by HSV and herpesviruses in general
    corecore