230 research outputs found

    Catalytic oxidation of emissions in combustion systems for forest biomass, using catalysts with TiO2 support

    Get PDF
    A study was made of the catalytic oxidation of a model mixture of effluents from forest biomass combustion equipment, consisting principally of methane (CH4), naphthalene (C10H8), carbon monoxide (CO) and oxygen-poor air (10% O2, balance N2), in a laboratory reactor, using MeOx/TiO2 catalysts (Me = Fe, Cu or Mn), prepared using incipient wetness impregnation. It was observed that the addition of metal oxides to the TiO2 increases catalytic activity in the combustion of all the contaminants present in the model effluent (CH 4, C10H8 and CO). The catalysts were characterised using the following techniques: SBET, XRD, DTG/DTA and TPD-NH 3; and from these it was observed that the support presented only the anatase phase in all the catalysts, despite having been subjected to temperatures in excess of 1.000 K during combustion. The highest acidity among all the solids tested, measured by TPD-NH3, was obtained for the FeOx/TiO2 catalysts, which were also those which showed the greatest catalytic activity. This high level of activity may be related to the formation of isolated metallic phases; i.e. hematite (Fe2O3), which would be the active phase in the combustion of C10H8 and CH4. On the other hand, with to respect to the 5 % wt. values of Me/TiO2 (Me: Fe, Cu y Mn) catalysts, the CuO/TiO2 catalyst shows greater activity than Fe2O3/TiO2 and MnOx/TiO2 for the oxidation of CO, which would be related to the formation of CuO on the TiO2 surface. The formation of mixed phases between the metals and the TiO2 was not observed. The SBET of the most active catalyst, Fe2O3/TiO2 (where Fe is 5% w/w in value), was not subject to any changes during the reaction

    The presence of both HLA-DRB1[*]04:01 and HLA-B[*]15:01 increases the susceptibility to cranial and extracranial giant cell arteritis.

    Get PDF
    Objectives: To determine if patients with the predominant extracranial large-vessel-vasculitis (LVV) pattern of giant cell arteritis (GCA) have a distinctive HLA-B association, different from that reported in biopsy-proven cranial GCA patients. In a further step we assessed if the combination of HLA-B and HLA-DRB1 alleles confers an increased risk for GCA susceptibility, either for the cranial and extracranial LVV phenotypes. Methods: A total of 184 patients with biopsy-proven cranial GCA, 105 with LVV-GCA and 486 healthy controls were included in our study. We compared HLA-B phenotype frequencies between the three groups. Results: HLA-B*15 phenotype was significantly increased in patients with classic cranial GCA compared to controls (14.7% versus 5.8%, respectively; p<0.01; OR [95% CI] =2.81 [1.54-5.11]). It was mainly due to the HLA-B*15:01 allele (12.5% versus 4.0%, respectively; p<0.01; OR [95% CI] =3.51 [1.77-6.99]) and remained statistically significant after Bonferroni correction. Similar HLA-B*15 association was observed in patients with the LVV-GCA (11.4% versus 5.8%, p=0.04, OR [95% CI] =2.11 [1.04-4.30]). This association was also mainly due to the HLA-B*15:01 allele (10.5% versus 4.0%, respectively; p=0.0054; OR [95% CI] =2.88 [1.19-6.59]). Noteworthy, the presence of HLA-B*15:01 together with HLA-DRB1*04:01 led to an increased risk of developing both cranial and extracranial LVV-GCA. Conclusions: Susceptibility to GCA is strongly related to the HLA region, regardless of the clinical phenotype of expression of the disease.This work was partially supported by RETICS Programs, RD08/0075 (RIER), RD12/0009/0013 and RD16/0012 from ‘‘Instituto de Salud Carlos III’’ (ISCIII) (Spain). However, this research did not receive any specific grant from funding agencies in the commercial or not-for-profit sectors

    HLA association with the susceptibility to anti-synthetase syndrome

    Get PDF
    Objective: To investigate the human leukocyte antigen (HLA) association with anti-synthetase syndrome (ASSD). Methods: We conducted the largest immunogenetic HLA-DRB1 and HLA-B study to date in a homogeneous cohort of 168 Caucasian patients with ASSD and 486 ethnically matched healthy controls by sequencing-based-typing. Results: A statistically significant increase of HLA-DRB1*03:01 and HLA-B*08:01 alleles in patients with ASSD compared to healthy controls was disclosed (26.2% versus 12.2%, P = 1.56E–09, odds ratio–OR [95% confidence interval–CI] = 2.54 [1.84–3.50] and 21.4% versus 5.5%, P = 18.95E–18, OR [95% CI] = 4.73 [3.18–7.05]; respectively). Additionally, HLA-DRB1*07:01 allele was significantly decreased in patients with ASSD compared to controls (9.2% versus 17.5%, P = 0.0003, OR [95% CI] = 0.48 [0.31–0.72]). Moreover, a statistically significant increase of HLA-DRB1*03:01 allele in anti-Jo-1 positive compared to anti-Jo-1 negative patients with ASSD was observed (31.8% versus 15.5%, P = 0.001, OR [95% CI] = 2.54 [1.39–4.81]). Similar findings were observed when HLA carrier frequencies were assessed. The HLA-DRB1*03:01 association with anti-Jo-1 was unrelated to smoking history. No HLA differences in patients with ASSD stratified according to the presence/absence of the most representative non-anti-Jo-1 anti-synthetase autoantibodies (anti-PL-12 and anti-PL-7), arthritis, myositis or interstitial lung disease were observed. Conclusions: Our results support the association of the HLA complex with the susceptibility to ASSD

    Developing country consumers’ acceptance of biofortified foods: a synthesis

    Get PDF
    The success of biofortified staple crops depends on whether they are accepted and consumed by target populations. In the past 8 years, several studies were undertaken to understand consumers’ acceptance of foods made with biofortified staple crops. Consumer acceptance is measured in terms of their sensory evaluation and economic valuation of biofortified varieties vis-à-vis conventional ones. These studies apply expert sensory panel and hedonic trait analyses methods adopted from food sciences literature, as well as various preference elicitation methods (including experimental auctions, revealed choice experiments, and stated choice experiments) adopted from experimental economics literature. These studies also test the impact of various levers on consumers’ evaluation and valuation for biofortified foods. These levers include (i) nutrition information and the media through which such information is conveyed; (ii) the length and content of nutrition information; (iii) different branding options; (iv) the nature (national or international) of the branding/certification agency that is endorsing the biofortified staple food; and (v) the nature (national or international) of the agency that is delivering the biofortified staple food. This paper brings together evidence on consumer acceptance of biofortified crops on 5 crops across 7 countries in Africa, Asia and Latin America. The results of these studies are expected to aid in the development of biofortified crops that consumers like, as well as in the development of appropriate marketing and consumer awareness or information campaigns to encourage the switch in consumption from traditional staples to biofortified ones

    Studies of new Higgs boson interactions through nonresonant HH production in the b¯bγγ fnal state in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for nonresonant Higgs boson pair production in the b ÂŻbγγ fnal state is performed using 140 fb−1 of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. This analysis supersedes and expands upon the previous nonresonant ATLAS results in this fnal state based on the same data sample. The analysis strategy is optimised to probe anomalous values not only of the Higgs (H) boson self-coupling modifer Îșλ but also of the quartic HHV V (V = W, Z) coupling modifer Îș2V . No signifcant excess above the expected background from Standard Model processes is observed. An observed upper limit ”HH &lt; 4.0 is set at 95% confdence level on the Higgs boson pair production cross-section normalised to its Standard Model prediction. The 95% confdence intervals for the coupling modifers are −1.4 &lt; Îșλ &lt; 6.9 and −0.5 &lt; Îș2V &lt; 2.7, assuming all other Higgs boson couplings except the one under study are fxed to the Standard Model predictions. The results are interpreted in the Standard Model efective feld theory and Higgs efective feld theory frameworks in terms of constraints on the couplings of anomalous Higgs boson (self-)interactions

    Measurement of the H → γ γ and H → ZZ∗ → 4 cross-sections in pp collisions at √s = 13.6 TeV with the ATLAS detector

    Get PDF
    The inclusive Higgs boson production cross section is measured in the di-photon and the Z Z∗ → 4 decay channels using 31.4 and 29.0 fb−1 of pp collision data respectively, collected with the ATLAS detector at a centre of-mass energy of √s = 13.6 TeV. To reduce the model dependence, the measurement in each channel is restricted to a particle-level phase space that closely matches the chan nel’s detector-level kinematic selection, and it is corrected for detector effects. These measured fiducial cross-sections are σfid,Îł Îł = 76+14 −13 fb, and σfid,4 = 2.80 ± 0.74 fb, in agreement with the corresponding Standard Model predic tions of 67.6±3.7 fb and 3.67±0.19 fb. Assuming Standard Model acceptances and branching fractions for the two chan nels, the fiducial measurements are extrapolated to the full phase space yielding total cross-sections of σ (pp → H) = 67+12 −11 pb and 46±12 pb at 13.6 TeV from the di-photon and Z Z∗ → 4 measurements respectively. The two measure ments are combined into a total cross-section measurement of σ (pp → H) = 58.2±8.7 pb, to be compared with the Stan dard Model prediction of σ (pp → H)SM = 59.9 ± 2.6 p

    Combination of searches for heavy spin-1 resonances using 139 fb−1 of proton-proton collision data at s = 13 TeV with the ATLAS detector

    Get PDF
    A combination of searches for new heavy spin-1 resonances decaying into different pairings of W, Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb−1 of proton-proton collisions at = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq, bb, , and tb) or third-generation leptons (Ï„Îœ and ττ) are included in this kind of combination for the first time. A simplified model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confidence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion

    Measurement and interpretation of same-sign W boson pair production in association with two jets in pp collisions at s = 13 TeV with the ATLAS detector

    Get PDF
    This paper presents the measurement of fducial and diferential cross sections for both the inclusive and electroweak production of a same-sign W-boson pair in association with two jets (W±W±jj) using 139 fb−1 of proton-proton collision data recorded at a centre-of-mass energy of √s = 13 TeV by the ATLAS detector at the Large Hadron Collider. The analysis is performed by selecting two same-charge leptons, electron or muon, and at least two jets with large invariant mass and a large rapidity diference. The measured fducial cross sections for electroweak and inclusive W±W±jj production are 2.92 ± 0.22 (stat.) ± 0.19 (syst.)fb and 3.38±0.22 (stat.)±0.19 (syst.)fb, respectively, in agreement with Standard Model predictions. The measurements are used to constrain anomalous quartic gauge couplings by extracting 95% confdence level intervals on dimension-8 operators. A search for doubly charged Higgs bosons H±± that are produced in vector-boson fusion processes and decay into a same-sign W boson pair is performed. The largest deviation from the Standard Model occurs for an H±± mass near 450 GeV, with a global signifcance of 2.5 standard deviations

    Catalytic Upgrading of Biomass Model Compounds: Novel Approaches and Lessons Learnt from Traditional Hydrodeoxygenation – a Review

    Get PDF
    Catalytic hydrodeoxygenation (HDO) is a fundamental process for bio‐resources upgrading to produce transportation fuels or added value chemicals. The bottleneck of this technology to be implemented at commercial scale is its dependence on high pressure hydrogen, an expensive resource which utilization also poses safety concerns. In this scenario, the development of hydrogen‐free alternatives to facilitate oxygen removal in biomass derived compounds is a major challenge for catalysis science but at the same time it could revolutionize biomass processing technologies. In this review we have analysed several novel approaches, including catalytic transfer hydrogenation (CTH), combined reforming and hydrodeoxygenation, metal hydrolysis and subsequent hydrodeoxygenation along with non‐thermal plasma (NTP) to avoid the supply of external H2. The knowledge accumulated from traditional HDO sets the grounds for catalysts and processes development among the hydrogen alternatives. In this sense, mechanistic aspects for HDO and the proposed alternatives are carefully analysed in this work. Biomass model compounds are selected aiming to provide an in‐depth description of the different processes and stablish solid correlations catalysts composition‐catalytic performance which can be further extrapolated to more complex biomass feedstocks. Moreover, the current challenges and research trends of novel hydrodeoxygenation strategies are also presented aiming to spark inspiration among the broad community of scientists working towards a low carbon society where bio‐resources will play a major role.Financial support for this work was provided by the Department of Chemical and Process Engineering of the University of Surrey and the EPSRC grants EP/J020184/2 and EP/R512904/1 as well as the Royal Society Research Grant RSGR1180353. Authors would also like to acknowledge the Ministerio de Economía, Industriay Competitividad of Spain (Project MAT2013‐45008‐P) and the Chinese Scholarship Council (CSC). LPP also thanks Comunitat Valenciana for her postdoctoral fellow (APOSTD2017)
    • 

    corecore