380 research outputs found

    Active-distributed temperature sensing to continuously quantify vertical flow in boreholes

    Get PDF
    We show how a distributed borehole flowmeter can be created from armored Fiber Optic cables with the Active-Distributed Temperature Sensing (A-DTS) method. The principle is that in a flowing fluid, the difference in temperature between a heated and unheated cable is a function of the fluid velocity. We outline the physical basis of the methodology and report on the deployment of a prototype A-DTS flowmeter in a fractured rock aquifer. With this design, an increase in flow velocity from 0.01 to 0.3 m s−1 elicited a 2.5°C cooling effect. It is envisaged that with further development this method will have applications where point measurements of borehole vertical flow do not fully capture combined spatiotemporal dynamics

    The social affordances of flashpacking: exploring the mobility nexus of travel and communication

    Get PDF
    The proliferation of digital devices and online social media and networking technologies has altered the backpacking landscape in recent years. Thanks to the ready availability of online communication, travelers are now able to stay in continuous touch with friends, family and other travelers while on the move. This article introduces the practice of ‘flashpacking’ to describe this emerging trend and interrogates the patterns of connection and disconnection that become possible as corporeal travel and social technologies converge. Drawing on the concepts of ‘assemblages’ and ‘affordances’, we outline several aspects of this new sociality: virtual mooring, following, collaborating, and (dis)connecting. The conclusion situates this discussion alongside broader questions about the shifting nature of social life in an increasingly mobile and mediated world and suggests directions for future research at the intersection of tourism and technology

    The ‘digital glimpse’ as imagining home

    Get PDF
    This paper proposes the concept of the ‘digital glimpse’, which develops the existing framing of imaginative travel. Here it articulates the experiences of mobile workers digitally connecting into family life and everyday rituals when physically absent with work. The recent embedding of digital communication technologies into personal relationships and family life is reconfiguring how absence is experienced and practiced by workers on the move, and through this, new digital paradigms for life on-the-move are emerging. This paper explores how such social relationships are maintained at-a-distance through digital technology – using evidence from qualitative interviews with mobile workers and their families. Digital technology now enables expressive forms of ‘virtual travel’, including video calling, picture sharing, and instant messaging. This has implications for the ways in which families can manage the social and relational pressures of being apart. Experiences of imaginative travel created through novel media can enrich the experience and give a greater sense of connection for both those who are at home and those who are away. While technology is limited in its ability to replicate a sense of co-presence, ‘digital glimpses’ are an emergent set of sociotechnical practices that can reduce the negative impact of absence on family relationships

    Tourism as connectedness.

    Get PDF
    Late modernity in developed nations is characterized by changing social and psychological conditions, including individualization, processes of competition and loneliness. Remaining socially connected is becoming increasingly important. In this situation, travel provides meaning through physical encounters, inclusion in traveller Gemeinschaft based on shared norms, beliefs and interests, and social status in societies increasingly defined by mobilities. As relationships are forged and found in mobility, travel is no longer an option, rather a necessity for sociality, identity construction, affirmation or alteration. Social contexts and the underlying motivations for tourism have changed fundamentally in late modernity: non-tourism has become a threat to self-conceptions. By integrating social and psychological perspectives, this paper expands and deepens existing travel and mobilities discussions to advance the understanding of tourism as a mechanism of social connectedness, and points to implications for future tourism research

    Structural changes to primary visual cortex in the congenital absence of cone input in achromatopsia

    Get PDF
    Autosomal recessive Achromatopsia (ACHM) is a rare inherited disorder associated with dysfunctional cone photoreceptors resulting in a congenital absence of cone input to visual cortex. This might lead to distinct changes in cortical architecture with a negative impact on the success of gene augmentation therapies. To investigate the status of the visual cortex in these patients, we performed a multi-centre study focusing on the cortical structure of regions that normally receive predominantly cone input. Using high-resolution T1-weighted MRI scans and surface-based morphometry, we compared cortical thickness, surface area and grey matter volume in foveal, parafoveal and paracentral representations of primary visual cortex in 15 individuals with ACHM and 42 normally sighted, healthy controls (HC). In ACHM, surface area was reduced in all tested representations, while thickening of the cortex was found highly localized to the most central representation. These results were comparable to more widespread changes in brain structure reported in congenitally blind individuals, suggesting similar developmental processes, i.e., irrespective of the underlying cause and extent of vision loss. The cortical differences we report here could limit the success of treatment of ACHM in adulthood. Interventions earlier in life when cortical structure is not different from normal would likely offer better visual outcomes for those with ACHM

    “I’m a Red River local”: rock climbing mobilities and community hospitalities

    Get PDF
    With individuals continually on the move, mobility fosters constellations of places at which individuals collectively moor and perform community. By focusing on one climbing destination – the Red River Gorge – this paper works across scales to highlight the spatial politics of mobilizing hospitality. In so doing, it summarizes the ways hosting/guesting thresholds dissolve with the growth of particular rock climbing associated infrastructures and moves to examine the ways climbers performances of community result in the (semi-)privatization of public space and attempts at localization. Further, the paper highlights the ways mobility is employed to maintain a political voice from afar, as well as to forge “local” identities with The Red as place with distinct subcultural (in)hospitality practices. Hospitality practices affirm power relations, they communicate who is at “home” and who has the power in a particular space to extend hospitality. The decision to extend hospitality is not simply the difference between an ethical encounter and a conditional one; it takes place in the very performance of identity. Thus, integrating a mobilities perspective into hospitality studies further illuminates the spatial politics that are at play in an ethics of hospitality

    Modelo de distribución de agua en suelo regado por goteo

    Get PDF
    [ES] Se desarrolla un modelo de simulación de la dinámica del agua en el suelo en riego localizado, denominado SIMDAS. Para el desarrollo del procedimiento numérico, se utiliza la teoría de flujo de agua en condiciones de no saturación, sin efecto histerético, resolviendo la ecuación de flujo axisimétrico sin y con extracción de agua por la planta a partir de un método en diferencias finitas, con la consideración de los distintos horizontes del suelo. Verificado el modelo en campo, los resultados que presenta son satisfactorios cuando no se contempla la presencia de cultivo, pero no lo son cuando interviene la extracción de agua por la planta. Por consiguiente, el grado de aceptabilidad es suficiente para fines de diseño agronómico de sistemas de riego localizado, pero no lo es para aquellos casos en que la extracción de agua por la planta interviene de manera destacada, como en el manejo y la programación de riegos.Ramírez De Cartagena Bisbe, F.; Sáinz Sánchez, MA. (1997). Modelo de distribución de agua en suelo regado por goteo. Ingeniería del Agua. 4(1):57-70. https://doi.org/10.4995/ia.1997.2716SWORD577041Armstrong C.F., Wilson T.V. (1983) Computer model for moisture distribution in stratified soils under a trickle source. Transactions of the American Society of Agricultural Engineers: 1704-1709.Belmans C., Wesswling J.G., Feddes R.A. (1983) Simulation model of the water balance of a cropped soil: SWATRE. Journal of Hidrology. 63 & 21: 271-286.Ben-Asher J., Charach CH., Zemel A. (1986) Infiltration and water extraction from trickle irrigation source: The effective hemisphere model. Soil Science Society of America Journal. 50: 882-887.Brandt A., BreslerE., Diner N., Ben-Asher J., Heller J., Goldberg. (1971) Infiltration from a trickle source: I. Mathematical models. Soil Science Society of America Proceedings, 35: 675-682.Bresler R E. (1975) Two-dimensional transport of solutes during nonsteady infiltration from a trickle source. Soil Science Society of America Proceedings, 39: 604-613.Feddes R.A., Kowalik P.J., Zaradny H. (1978) Simulation of field water use and crop yield. PUDOC, Wageningen. 189pp.Ghali S.G. (1986) Mathematical modelling of soil moisture dynamics in trickle irrigated fields. Thesis, University of Southampton (UK).Gupta S.C., Larson W.E. (1979) Estimating soil wáter retention characteristics from particle size distribution, organic matter percent, and bulk density. Water Resources Research, 15(6): 1633-1635.Hillel D. (1977) Computer simulation of soil-waters dynamics. A compendium of recent work. IDRC, Ottawa, Canada. 214 pp.Jackson R.D. (1972) On the calculation of hydraulic conductivity. Soil Science Society of America Proceedings. 36: 380-382.Keller J. (1978) Trickle irrigation. In Irrigation (Ch. 7). National Engineering Handbook USDA-SCS.Keller J., Karmelid. (1975) Trickle irrigation design. Rain Bird Corp. Glendora, California USA. 133 pp.Khatri K.C. (1984) Simulation of soil moisture migration from a point source. Thesis, McGill University, Quebec, Canada.Kunze R.J., Uehara G., Graham K. (1968) Factors important in the calculation of hydraulic conductivity. Soil Science Soc. Amer. Proc., 32: 760-765.Lafolie F., Guenelon R., Van Genuchten M.TH. (1989a.) Analysis of water flow under trickle irrigation: I. Theory and numerical solution. Soil Science Society of America Journal, 53: 1310-1318.Lafolie P., Guenelon R., Van Genuchten M.TH. (1989b.) Analysis of water flow under trickle irrigation: II. Experimental evaluation. Soil Science Society of America Journal. 53: 1318-1323.Marino M.A., Tracy J.C. (1988) Flow of water through root-soil environment. Journal of Irrigation and Drainage Engineering, 114 (4): 588-604.Marshall T.J. (1958) A relation between permeability and size distribution of pores. Journal of Soil Science, 9 (8): 1-8.Millington R.J., Quirk J.P. (1959) Permeability of porous media Nature, 183: 378-388.Molz F.J., Remson I. (1970) Extraction term models of soil moisture use by transpiring plants. Water Resources Research, 6 (5): 1346-1356.Philip J.R. (1971) General theorem on steady infiltration from surface sources, with application to point and line sources. Soil Science Society of America Proceedings, 35: 867-871.Pradad R. (1988) A linear root water uptake model Journal of Hidrology, 99: 297-306.Raats P.A.C. (1977) Laterally confined, steady flows of water from sources and to sinks in unsaturated soils. Soil Science Society of America Journal, 41:294-304.Ramírez De Cartagena F. (1994) Simulación numerica de la dinámica del agua en el suelo. Aplicacion al diseño de sistemas de riego LAF. Tesis Doctoral. ETSEA. Universidad de Lleida.Rawls W.J., Brakensiek D.L. (1982) Estimating soil water retention from soil properties. Journal of the Irrigation and Drainage Division, Proc. of the ASCE, 108, IR2: 166-171.Saxton K.E., Rawls W.J., Romberger J.S., Papendick R.I. (1986) Estimating generalized soil-water characteristics from texture. Soil Science Society of America Journal, 50: 1031-1036.Taghavi S.A., Mariño M.A., Rolston D.E. (1985) Infiltration from a trickle source in a heterogeneous soil medium. Journal of Hidrology, 78: 107-121.Van Der Ploeg R.R., Benecke P. (1974) Unsteady, unsaturated, n-dimensional moisture flow in soil: A computer simulation program. Soil Science Society of America Proceedings, 38: 881-885Vermeiren L., Jobling G.A. (1986) Riego localizado. Estudios FAO Riego y Drenaje, n°36. FAO. Roma. 203 pp.Warrick A.W., Lomen D.O., Amoozegarfard A. (1980) Linearized moisture flow with root extraction for three dimensional, steady conditions. Soil Science Society of America Journal, 44: 911-914
    corecore