697 research outputs found

    Global visualization and quantification of compressible vortex loops

    Get PDF
    The physics of compressible vortex loops generated due to the rolling up of the shear layer upon the diffraction of a shock wave from a shock tube is far from being understood, especially when shock-vortex interactions are involved. This is mainly due to the lack of global quantitative data available which characterizes the flow. The present study involves the usage of the PIV technique to characterize the velocity and vorticity of compressible vortex loops formed at incident shock Mach numbers ofM=1.54 and1.66. Another perk of the PIV technique over purely qualitative methods, which has been demonstrated in the current study, is that at the same time the results also provide a clear image of the various flow features. Techniques such as schlieren and shadowgraph rely on density gradients present in the flow and fail to capture regions of the flow influenced by the primary flow structure which would have relatively lower pressure and density. Various vortex loops, namely, square, elliptic and circular, were generated using different shape adaptors fitted to the end of the shock tube. The formation of a coaxial vortex loop with opposite circulation along with the generation of a third stronger vortex loop ahead of the primary with same circulation direction are of the interesting findings of the current study

    Stability of laser cavity-solitons for metrological applications

    Get PDF
    Laser cavity-solitons can appear in systems comprised of a nonlinear microcavity nested within an amplifying fiber loop. These states are robust and self-emergent and constitute an attractive class of solitons that are highly suitable for microcomb generation. Here, we present a detailed study of the free-running stability properties of the carrier frequency and repetition rate of single solitons, which are the most suitable states for developing robust ultrafast and high repetition rate comb sources. We achieve free-running fractional stability on both optical carrier and repetition rate (i.e., 48.9 GHz) frequencies on the order of 10^-9 for a 1 s gate time. The repetition rate results compare well with the performance of state-of-the-art (externally driven) microcomb sources, and the carrier frequency stability is in the range of performance typical of modern free-running fiber lasers. Finally, we show that these quantities can be controlled by modulating the laser pump current and the cavity length, providing a path for active locking and long-term stabilization

    Characterizing Genetic Diversity of Contemporary Pacific Chickens Using Mitochondrial DNA Analyses

    Get PDF
    Background\ud Mitochondrial DNA (mtDNA) hypervariable region (HVR) sequences of prehistoric Polynesian chicken samples reflect dispersal of two haplogroups—D and E—by the settlers of the Pacific. The distribution of these chicken haplogroups has been used as an indicator of human movement. Recent analyses suggested similarities between prehistoric Pacific and South American chicken samples, perhaps reflecting prehistoric Polynesian introduction of the chicken into South America. These analyses have been heavily debated. The current distribution of the D and E lineages among contemporary chicken populations in the Western Pacific is unclear, but might ultimately help to inform debates about the movements of humans that carried them.\ud \ud Objectives\ud We sought to characterize contemporary mtDNA diversity among chickens in two of the earliest settled archipelagoes of Remote Oceania, the Marianas and Vanuatu.\ud \ud Methods\ud We generated HVR sequences for 43 chickens from four islands in Vanuatu, and for 5 chickens from Guam in the Marianas.\ud \ud Results\ud Forty samples from Vanuatu and three from Guam were assigned to haplogroup D, supporting this as a Pacific chicken haplogroup that persists in the Western Pacific. Two haplogroup E lineages were observed in Guam and two in Vanuatu. Of the E lineages in Vanuatu, one was identical to prehistoric Vanuatu and Polynesian samples and the other differed by one polymorphism. Contrary to our expectations, we observed few globally distributed domesticate lineages not associated with Pacific chicken dispersal. This might suggest less European introgression of chickens into Vanuatu than expected. If so, the E lineages might represent lineages maintained from ancient Pacific chicken introductions. The Vanuatu sample might thus provide an opportunity to distinguish between maintained ancestral Pacific chicken lineages and replacement by global domesticates through genomic analyses, which could resolve questions of contemporary haplogroup E chicken relationships and inform interpretations of debated sequences from archaeological samples

    Monitoring tar spot disease in corn at different canopy and temporal levels using aerial multispectral imaging and machine learning

    Get PDF
    IntroductionTar spot is a high-profile disease, causing various degrees of yield losses on corn (Zea mays L.) in several countries throughout the Americas. Disease symptoms usually appear at the lower canopy in corn fields with a history of tar spot infection, making it difficult to monitor the disease with unmanned aircraft systems (UAS) because of occlusion.MethodsUAS-based multispectral imaging and machine learning were used to monitor tar spot at different canopy and temporal levels and extract epidemiological parameters from multiple treatments. Disease severity was assessed visually at three canopy levels within micro-plots, while aerial images were gathered by UASs equipped with multispectral cameras. Both disease severity and multispectral images were collected from five to eleven time points each year for two years. Image-based features, such as single-band reflectance, vegetation indices (VIs), and their statistics, were extracted from ortho-mosaic images and used as inputs for machine learning to develop disease quantification models.Results and discussionThe developed models showed encouraging performance in estimating disease severity at different canopy levels in both years (coefficient of determination up to 0.93 and Lin’s concordance correlation coefficient up to 0.97). Epidemiological parameters, including initial disease severity or y0 and area under the disease progress curve, were modeled using data derived from multispectral imaging. In addition, results illustrated that digital phenotyping technologies could be used to monitor the onset of tar spot when disease severity is relatively low (< 1%) and evaluate the efficacy of disease management tactics under micro-plot conditions. Further studies are required to apply and validate our methods to large corn fields

    High fragmentation characterizes tumour-derived circulating DNA.

    Get PDF
    BACKGROUND: Circulating DNA (ctDNA) is acknowledged as a potential diagnostic tool for various cancers including colorectal cancer, especially when considering the detection of mutations. Certainly due to lack of normalization of the experimental conditions, previous reports present many discrepancies and contradictory data on the analysis of the concentration of total ctDNA and on the proportion of tumour-derived ctDNA fragments. METHODOLOGY: In order to rigorously analyse ctDNA, we thoroughly investigated ctDNA size distribution. We used a highly specific Q-PCR assay and athymic nude mice xenografted with SW620 or HT29 human colon cancer cells, and we correlated our results by examining plasma from metastatic CRC patients. CONCLUSION/SIGNIFICANCE: Fragmentation and concentration of tumour-derived ctDNA is positively correlated with tumour weight. CtDNA quantification by Q-PCR depends on the amplified target length and is optimal for 60-100 bp fragments. Q-PCR analysis of plasma samples from xenografted mice and cancer patients showed that tumour-derived ctDNA exhibits a specific amount profile based on ctDNA size and significant higher ctDNA fragmentation. Metastatic colorectal patients (n = 12) showed nearly 5-fold higher mean ctDNA fragmentation than healthy individuals (n = 16)

    Origin and quantification of circulating DNA in mice with human colorectal cancer xenografts

    Get PDF
    Although circulating DNA (ctDNA) could be an attractive tool for early cancer detection, diagnosis, prognosis, monitoring or prediction of response to therapies, knowledge on its origin, form and rate of release is poor and often contradictory. Here, we describe an experimental system to systematically examine these aspects. Nude mice were xenografted with human HT29 or SW620 colorectal carcinoma (CRC) cells and ctDNA was analyzed by Q–PCR with highly specific and sensitive primer sets at different times post-graft. We could discriminate ctDNA from normal (murine) cells and from mutated and non-mutated tumor (human) cells by using species-specific KRAS or PSAT1 primers and by assessing the presence of the BRAF V600E mutation. The concentration of human (mutated and non-mutated) ctDNA increased significantly with tumor growth. Conversely, and differently from previous studies, low, constant level of mouse ctDNA was observed, thus facilitating the study of mutated and non-mutated tumor derived ctDNA. Finally, analysis of ctDNA fragmentation confirmed the predominance of low-size fragments among tumor ctDNA from mice with bigger tumors. Higher ctDNA fragmentation was also observed in plasma samples from three metastatic CRC patients in comparison to healthy individuals. Our data confirm the predominance of mononucleosome-derived fragments in plasma from xenografted animals and, as a consequence, of apoptosis as a source of ctDNA, in particular for tumor-derived ctDNA. Altogether, our results suggest that ctDNA features vary during CRC tumor development and our experimental system might be a useful tool to follow such variations

    Interval type-2 fuzzy modelling and stochastic search for real-world inventory management

    Get PDF
    Real-world systems present a variety of challenges to the modeller, not least of which is the problem of uncertainty inherent in their operation. In this research, an interval type-2 fuzzy model is applied to a real-world problem, the goal being to discover a suitable optimisation configuration to enable a search for an inventory plan using the model. To this end, a series of simulated annealing configurations and the interval type-2 fuzzy model were used to search for appropriate inventory plans for a large-scale real-world problem. A further set of tests were conducted in which the performance of the interval type-2 fuzzy model was compared with a corresponding type-1 fuzzy model. In these tests the results were inconclusive, though, as will be discussed there are many ways in which type-2 fuzzy logic can be exploited to demonstrate its advantages over a type-1 approach. To conclude, in this research we have shown that a combination of interval type-2 fuzzy logic and simulated annealing is a logical choice for inventory management modelling and inventory plan search, and propose that the benefits that a type-2 model offers, can make it preferable to a corresponding type-1 system

    Anisotropy studies around the galactic centre at EeV energies with the Auger Observatory

    Get PDF
    Data from the Pierre Auger Observatory are analyzed to search for anisotropies near the direction of the Galactic Centre at EeV energies. The exposure of the surface array in this part of the sky is already significantly larger than that of the fore-runner experiments. Our results do not support previous findings of localized excesses in the AGASA and SUGAR data. We set an upper bound on a point-like flux of cosmic rays arriving from the Galactic Centre which excludes several scenarios predicting sources of EeV neutrons from Sagittarius AA. Also the events detected simultaneously by the surface and fluorescence detectors (the `hybrid' data set), which have better pointing accuracy but are less numerous than those of the surface array alone, do not show any significant localized excess from this direction.Comment: Matches published versio

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation
    corecore