1,635 research outputs found
Materiales y tecnologías en la Arquitectura Modernista: casos de estudio de decoración de fachadas en Italia, Portugal y Polonia persiguiendo una restauración racional
The results of a diagnostic survey on the materials of representative Art Nouveau buildings in Italy, Portugal and Poland are here presented and compared, as a contribution to their understanding and, hence, to support compatible restoration. In particular, the facade decorations were investigated for the appraisal of their materials and technologies, often neglected in current maintenance/restoration works and so cancelled, leading to a severe loss in architectural image. The ongoing diagnostic campaign, in collaboration among different universities, is aimed to set up a database on materials and technologies of Art Nouveau facade decorations at a European scale, as a technical-scientific background for the highlighting of preservation guidelines
The tetranuclear copper active site of nitrous oxide reductase: the CuZ center
J Biol Inorg Chem (2011) 16:183–194
DOI 10.1007/s00775-011-0753-3This review focuses on the novel CuZ center of nitrous oxide reductase, an important enzyme owing to the environmental significance of the reaction it catalyzes,
reduction of nitrous oxide, and the unusual nature of its catalytic center, named CuZ. The structure of the CuZ center, the unique tetranuclear copper center found in this
enzyme, opened a novel area of research in metallobiochemistry.
In the last decade, there has been progress in defining the structure of the CuZ center, characterizing the mechanism of nitrous oxide reduction, and identifying
intermediates of this reaction. In addition, the determination of the structure of the CuZ center allowed a structural interpretation of the spectroscopic data, which was supported by theoretical calculations. The current knowledge of the structure, function, and spectroscopic characterization of the CuZ center is described here. We would like to stress that although many questions have been answered,
the CuZ center remains a scientific challenge, with many hypotheses still being formed
The electron transfer complex between nitrous oxide reductase and its electron donors
J Biol Inorg Chem (2011) 16:1241–1254
DOI 10.1007/s00775-011-0812-9Identifying redox partners and the interaction surfaces is crucial for fully understanding electron flow in a respiratory chain. In this study, we focused on the interaction of nitrous oxide reductase (N2OR), which catalyzes the final step in bacterial denitrification, with its physiological electron donor, either a c-type cytochrome or a type 1 copper protein. The comparison between the interaction of N2OR from three different microorganisms, Pseudomonas nautica, Paracoccus denitrificans, and Achromobacter
cycloclastes, with their physiological electron donors was performed through the analysis of the primary sequence alignment, electrostatic surface, and molecular docking
simulations, using the bimolecular complex generation with global evaluation and ranking algorithm. The docking results were analyzed taking into account the experimental
data, since the interaction is suggested to have either a hydrophobic nature, in the case of P. nautica N2OR, or an electrostatic nature, in the case of P. denitrificans N2OR
and A. cycloclastes N2OR. A set of well-conserved residues on the N2OR surface were identified as being part of the electron transfer pathway from the redox partner to N2OR(Ala495, Asp519, Val524, His566 and Leu568 numbered according to the P. nautica N2OR sequence). Moreover, we
built a model for Wolinella succinogenes N2OR, an enzyme that has an additional c-type-heme-containing domain. The
structures of the N2OR domain and the c-type-heme-containing domain were modeled and the full-length structure was obtained by molecular docking simulation of these two
domains. The orientation of the c-type-heme-containing domain relative to the N2OR domain is similar to that found in the other electron transfer complexes
Revisiting the metal sites of nitrous oxide reductase in a low-dose structure from Marinobacter nauticus
Funding Information:
This work was supported by the Deutsche Forschungsgemeinschaft (RTG 1976, Project No. 235777276, and PP 1927, Project No. 311061829 to O.E.) and the European Research Council (Grant No. 310656 to O.E.). The authors thank Lin Zhang for the helpful discussions.
Funding Information:
Open Access funding enabled and organized by Projekt DEAL. This work was funded by European Molecular Biology Organization, ASTF 282.00-2010, Deutsche Forschungsgemeinschaft, PP 1927, Project No. 311061829, RTG 1976, Project No. 235777276, FP7
Publisher Copyright:
© The Author(s) 2024.Copper-containing nitrous oxide reductase catalyzes a 2-electron reduction of the green-house gas N2O to yield N2. It contains two metal centers, the binuclear electron transfer site CuA, and the unique, tetranuclear CuZ center that is the site of substrate binding. Different forms of the enzyme were described previously, representing variations in oxidation state and composition of the metal sites. Hypothesizing that many reported discrepancies in the structural data may be due to radiation damage during data collection, we determined the structure of anoxically isolated Marinobacter nauticus N2OR from diffraction data obtained with low-intensity X-rays from an in-house rotating anode generator and an image plate detector. The data set was of exceptional quality and yielded a structure at 1.5 Å resolution in a new crystal form. The CuA site of the enzyme shows two distinct conformations with potential relevance for intramolecular electron transfer, and the CuZ cluster is present in a [4Cu:2S] configuration. In addition, the structure contains three additional types of ions, and an analysis of anomalous scattering contributions confirms them to be Ca2+, K+, and Cl–. The uniformity of the present structure supports the hypothesis that many earlier analyses showed inhomogeneities due to radiation effects. Adding to the earlier description of the same enzyme with a [4Cu:S] CuZ site, a mechanistic model is presented, with a structurally flexible CuZ center that does not require the complete dissociation of a sulfide prior to N2O binding. Graphical Abstract: The [4Cu:2S] CuZ site in M. nauticus N 2O reductase. The electron density map shown is contoured at the 5 σ level, highlighting the presence of two sulfide ligands. 705x677mm (72 x 72 DPI) (Figure presented.)publishersversionpublishe
Electron transfer complex between nitrous oxide reductase and cytochrome c552 from Pseudomonas nautica: kinetic, nuclear magnetic resonance, and docking studies
Biochemistry. 2008 Oct 14;47(41):10852-62. doi: 10.1021/bi801375qThe multicopper enzyme nitrous oxide reductase (N 2OR) catalyzes the final step of denitrification, the two-electron reduction of N 2O to N 2. This enzyme is a functional homodimer containing two different multicopper sites: CuA and CuZ. CuA is a binuclear copper site that transfers electrons to the tetranuclear copper sulfide CuZ, the catalytic site. In this study, Pseudomonas nautica cytochrome c 552 was identified as the physiological electron donor. The kinetic data show differences when physiological and artificial electron donors are compared [cytochrome vs methylviologen (MV)]. In the presence of cytochrome c 552, the reaction rate is dependent on the ET reaction and independent of the N 2O concentration. With MV, electron donation is faster than substrate reduction. From the study of cytochrome c 552 concentration dependence, we estimate the following kinetic parameters: K m c 552 = 50.2 +/- 9.0 muM and V max c 552 = 1.8 +/- 0.6 units/mg. The N 2O concentration dependence indicates a K mN 2 O of 14.0 +/- 2.9 muM using MV as the electron donor. The pH effect on the kinetic parameters is different when MV or cytochrome c 552 is used as the electron donor (p K a = 6.6 or 8.3, respectively). The kinetic study also revealed the hydrophobic nature of the interaction, and direct electron transfer studies showed that CuA is the center that receives electrons from the physiological electron donor. The formation of the electron transfer complex was observed by (1)H NMR protein-protein titrations and was modeled with a molecular docking program (BiGGER). The proposed docked complexes corroborated the ET studies giving a large number of solutions in which cytochrome c 552 is placed near a hydrophobic patch located around the CuA center
A new CuZ active form in the catalytic reduction of N2O by nitrous oxide reductase from Pseudomonas nautica
J Biol Inorg Chem (2010) 15:967–976
DOI 10.1007/s00775-010-0658-6The final step of bacterial denitrification, the two-electron reduction of N2O to N2, is catalyzed by a multi-copper enzyme named nitrous oxide reductase. The catalytic centre of this enzyme is a tetranuclear copper site called CuZ, unique in biological systems. The in vitro reconstruction of the activity requires a slow activation in the presence of the artificial electron donor, reduced methyl viologen, necessary to reduce CuZ from the resting non-active state (1CuII/3CuI) to the fully reduced state (4CuI), in contrast to the turnover cycle, which is very fast. In the present work, the direct reaction of the activated form of Pseudomonas nautica nitrous oxide reductase with stoichiometric amounts of N2O allowed the identification of a new reactive intermediate of the catalytic centre, CuZ°, in the turnover cycle, characterized by an intense absorption band at 680 nm. Moreover, the first mediated electrochemical study of Ps. nautica nitrous oxide reductase with its physiological electron donor, cytochrome c-552, was performed. The intermolecular electron transfer was analysed by cyclic voltammetry, under catalytic conditions, and a second-order rate constant of (5.5 ± 0.9) × 105 M−1 s−1 was determined. Both the reaction of stoichiometric amounts of substrate and the electrochemical studies show that the active CuZ° species, generated in the absence of reductants, can rearrange to the resting non-active CuZ state. In this light, new aspects of the catalytic and activation/inactivation mechanism of the enzyme are discussed
Telephone conversation impairs sustained visual attention via a central bottleneck
Recent research has shown that holding telephone conversations disrupts one's driving ability. We asked whether this effect could be attributed to a visual attention impairment. In Experiment 1, participants conversed on a telephone or listened to a narrative while engaged in multiple object tracking (MOT), a task requiring sustained visual attention. We found that MOT was disrupted in the telephone conversation condition, relative to single-task MOT performance, but that listening to a narrative had no effect. In Experiment 2, we asked which component of conversation might be interfering with MOT performance. We replicated the conversation and single-task conditions of Experiment 1 and added two conditions in which participants heard a sequence of words over a telephone. In the shadowing condition, participants simply repeated each word in the sequence. In the generation condition, participants were asked to generate a new word based on each word in the sequence. Word generation interfered with MOT performance, but shadowing did not. The data indicate that telephone conversation disrupts attention at a central stage, the act of generating verbal stimuli, rather than at a peripheral stage, such as listening or speaking
Target Cueing Provides Support for Target- and Resource-Based Models of the Attentional Blink
The attentional blink (AB) describes a time-based deficit in processing the second of two masked targets. The AB is attenuated if successive targets appear between the first and final target, or if a cueing target is positioned before the final target. Using various speeds of stimulus presentation, the current study employed successive targets and cueing targets to confirm and extend an understanding of target-target cueing in the AB. In Experiment 1, three targets were presented sequentially at rates of 30 msec/item or 90 msec/item. Successive targets presented at 90 msec improved performance compared with non-successive targets. However, accuracy was equivalently high for successive and non-successive targets presented at 30 msec/item, suggesting that–regardless of whether they occurred consecutively–those items fell within the temporally defined attentional window initiated by the first target. Using four different presentation speeds, Experiment 2 confirmed the time-based definition of the AB and the success of target-cueing at 30 msec/item. This experiment additionally revealed that cueing was most effective when resources were not devoted to the cue, thereby implicating capacity limitations in the AB. Across both experiments, a novel order-error measure suggested that errors tend to decrease with an increasing duration between the targets, but also revealed that certain stimulus conditions result in stable order accuracy. Overall, the results are best encapsulated by target-based and resource-sharing theories of the AB, which collectively value the contributions of capacity limitations and optimizing transient attention in time
Diffusion tensor imaging of Parkinson's disease, multiple system atrophy and progressive supranuclear palsy: a tract-based spatial statistics study
Although often clinically indistinguishable in the early stages, Parkinson's disease (PD), Multiple System Atrophy (MSA) and Progressive Supranuclear Palsy (PSP) have distinct neuropathological changes. The aim of the current study was to identify white matter tract neurodegeneration characteristic of each of the three syndromes. Tract-based spatial statistics (TBSS) was used to perform a whole-brain automated analysis of diffusion tensor imaging (DTI) data to compare differences in fractional anisotropy (FA) and mean diffusivity (MD) between the three clinical groups and healthy control subjects. Further analyses were conducted to assess the relationship between these putative indices of white matter microstructure and clinical measures of disease severity and symptoms. In PSP, relative to controls, changes in DTI indices consistent with white matter tract degeneration were identified in the corpus callosum, corona radiata, corticospinal tract, superior longitudinal fasciculus, anterior thalamic radiation, superior cerebellar peduncle, medial lemniscus, retrolenticular and anterior limb of the internal capsule, cerebral peduncle and external capsule bilaterally, as well as the left posterior limb of the internal capsule and the right posterior thalamic radiation. MSA patients also displayed differences in the body of the corpus callosum corticospinal tract, cerebellar peduncle, medial lemniscus, anterior and superior corona radiata, posterior limb of the internal capsule external capsule and cerebral peduncle bilaterally, as well as the left anterior limb of the internal capsule and the left anterior thalamic radiation. No significant white matter abnormalities were observed in the PD group. Across groups, MD correlated positively with disease severity in all major white matter tracts. These results show widespread changes in white matter tracts in both PSP and MSA patients, even at a mid-point in the disease process, which are not found in patients with PD
Measurement of the cross-section and charge asymmetry of bosons produced in proton-proton collisions at TeV with the ATLAS detector
This paper presents measurements of the and cross-sections and the associated charge asymmetry as a
function of the absolute pseudorapidity of the decay muon. The data were
collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with
the ATLAS experiment at the LHC and correspond to a total integrated luminosity
of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements
varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the
1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured
with an uncertainty between 0.002 and 0.003. The results are compared with
predictions based on next-to-next-to-leading-order calculations with various
parton distribution functions and have the sensitivity to discriminate between
them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables,
submitted to EPJC. All figures including auxiliary figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
- …