13 research outputs found

    Impact of graphene oxide and highly reduced graphene oxide on cement based composites

    Get PDF
    This study examines and compares the performance of two specific forms of graphene nanomaterials in the cement based composite, namely graphene oxide (GO) and reduced graphene oxide (rGO). A typical forms of GO with the average C:O ratio of 54:46 and a rGO with the average C:O ratio of 82:18 were used in the cement based paste composites. rGO was treated with superplasticizer to improve its dispersibility in water. Both GO and rGO were used as 0.02, 0.04, 0.06 wt% of cement. The effect of GO and rGO on workability, early age hydration, microstructure, mechanical and transport properties was determined. Different characteristics of GO and rGO such as molecular structure, functional groups, d spacing, size and physical strength influenced the properties of the cement based composites. The workability and final setting time of composite gradually decreased compared to 100% PC (control) with higher dosages of GO up to 0.06 wt% (of cement), which is due to the dominant oxygen functional groups and the hydrophilic nature of GO. To the contrary, the workability and final setting time increased in the rGO composites compared to the control mix due to the almost hydrophobic nature of rGO and the presence of superplasticiser. The XRD and TGA quantification of the hydration products shows that GO composites have a greater content of Ca(OH)2 and C-S-H compared to rGO composites measured at 1, 7 and 28 days. Micropores (smaller than ∼10 µm) in GO composites were observed to be filled with calcium silicate hydrate (C-S-H) gel and crystalline compounds. Random pore filling nature was observed in rGO composites and ettringite was more common element in those pores. Meso and gel pores

    Nano-cement composite with graphene oxide produced from epigenetic graphite deposit

    Get PDF
    This study presents the development of a nano-cement composite with graphene oxide (GO) carbon-based nanomaterials synthesized from a high-purity epigenetic graphite deposit. Diamond drill sampled graphite mineralization was upgraded through beneficiation and purification to recover a high-purity graphite product (99.9% graphitic carbon “Cg”). An alternate and improved chemical oxidation process based on the Modified Hummers method was adopted for the synthesis of GO from high-purity graphite. Microstructural analysis were performed to characterise GO. The GO consists of single bondOH, single bondC=O, single bondCOOH, and C-O-C functional groups with a layer thickness of 1.2 nm, 2 to 3 layers of graphene, an interlayer distance of 0.90 nm and a Raman (ID/IG) ratio of 0.79. The effect of 0.02, 0.04, and 0.06 wt% GO of cement on the composite workability, hydration, microstructure, mechanical and transport properties was determined. Increasing the concentration of GO in the composite decreased the workability due to the hydrophilic nature of the 2D planar surface. The rate of hydration accelerated and the cumulative hydration heat increased with the increasing proportions of GO in the composite. GO dosages about 0.02 and 0.04 wt% of cement in the composites resulted the maximum enhancement of compressive and flexural strength by 83 and 26%, respectively, compared to the control mix (0 wt% GO). The microstructural investigation shows that GO enhanced the hydration of calcium hydroxide (CH) and calcium silicate hydrate (C-S-H) during the nucleation and growth stages, filled pores, bridged micro-cracks and created interlocking between the cement hydration products. Collectively, these effects ultimately improved the mechanical properties of the composites. Also, in this process, the 0.02 and 0.04 wt% GO cement composite increased the electrical resistivity by 11.5%, and decreased the sorptivity by 29%, respectively, both of which improved the overall performance of the composite

    Investigation of the electrical properties of Graphene-reinforced geopolymer composites

    Get PDF
    Geopolymer composites provide an environmentally friendly alternative to cement-based composites in the construction industry. Due to their distinctive material composition, geopolymers also exhibit electrically conductive properties, which permit their application as a functional material. The current work aims to study the distinctive electrical properties of fly-ash-based geopolymer composites. Varying dosages of graphene oxide (i.e., 0, 0.1, 0.2, 0.3, 0.4% (by wt. of binder)) were introduced into the geopolymer matrix to enhance electrical conductivity. While GO (graphene oxide) is typically less conductive, the interaction of GO sheets with the alkaline solution during geopolymerisation reduced the functional groups and produced cross-linked rGO (reduced graphene oxide) sheets with increased mechanical and electrical conductivity properties. Solid-state impedance spectroscopy was used to characterize the electrical properties of geopolymer composites in terms of several parameters, such as impedance, electrical conductivity and dielectric properties, within the frequency ranging from 101 to 105 Hz. The relationship between the electrical properties and graphene oxide reinforcement can effectively establish geopolymer composite development as smart materials with desirable functionality. The results suggest an effective enhancement in electrical conductivity of up to 7.72 × 10−13 Ω⋅mm−1 and the dielectric response performance of graphene-reinforced fly-ash-based geopolymer composites

    Ultrasonic-assisted synthesis of graphene oxide – fungal hyphae: An efficient and reclaimable adsorbent for chromium(VI) removal from aqueous solution

    Get PDF
    In this study, a hybrid film bio-nanocomposite material was developed based on the graphene oxide/fungal hyphae (GO-FH) interaction. The developed GO-FH bio-nanocomposite material was used for the removal of hexavalent chromium from aqueous solution. The GO-FH bio-nanocomposite material was prepared by ultrasonic irradiation technique. The synthesized GO-FH bio-nanocomposite material was characterized by XRD, FT-IR, SEM, TEM and TGA. The adsorption experiments were carried out in batch mode to optimize parameters such as pH, adsorbent dosage, initial Cr(VI) ion concentration, contact time and shaking speed. The results indicated that the adsorption of Cr(VI) onto GO-FH bio-nanocomposite material was pH dependant, with the maximum adsorption capacity of 212.76 mg/g occurred at pH 2.0. The adsorption studies followed, Langmuir isotherm and pseudo second order kinetic model. Findings demonstrates that GO-FH bio-nanocomposite material exhibited excellent regeneration performance

    Nano reinforced cement paste composite with functionalized graphene and pristine graphene nanoplatelets

    Get PDF
    This study examines and compares the workability, hydration, mechanical, microstructure and transport properties of cement paste composites containing the three forms of graphene-based 2D nanomaterials synthesised from epigenetic graphite deposit, namely, graphene oxide (GO), reduced graphene oxide (rGO), and pristine graphene nanoplatelates (G). Graphene materials were used from 0.01% to 0.16% of cement weight. The rGO and G were treated with salt and surfactant, respectively during synthesis, to improve dispersion in water. Characteristics and physical strength vary among GO, rGO and G, which have influenced the properties of nano reinforced graphene-cement composites (GCCs). The 28-day compressive and flexural strength of graphene (GO, rGO and G) cement composite improved by 28% and 81%, 30% and 84%, and 39% and 38%, respectively, compared to the control mix (cement paste without graphene materials). Finally, microscopic analysis, dynamic vapour sorption (DVS), electrical resistivity and water sorptivity results suggested that graphene materials densify and reinforce the composite microstructure

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    The role of graphene and its derivatives in modifying different phases of geopolymer composites: A review

    No full text
    There is broad agreement among researchers that the next facing of the construction material industry is ‘geopolymer composites’, also called ‘green composites. Although geopolymer composites have been extensively investigated as a new sustainable building material in recent years, their acceptability is still limited owing to few critical fragilities as a commercial material for construction. However, recent progress on geopolymer composites by several scientists suggests that it could be designed at the nanoscale to significantly enhance the chemical and physiomechanical characteristics to overcome multiple limitations. Graphene, a 2D nanomaterial, has been reported to improve various crucial properties when combined with geopolymer composites. This review paper starts with a bibliometric investigation of the studies related to graphene reinforced geopolymer composites (GRGC) to provide useful insights into current research trends. The paper described the synthesis of suitable graphene derivatives and the manufacturing of different phases of GRGC, namely ink, paste, mortar, and composites. Then a critical review is provided on the mechanical and electrical properties enhancement of graphene geopolymer matrix systems through the modification of the composite matrix at the nano-micro structural level. The GRGC has the potential to be used in multiple applications, such as the recycling of industrial solid waste, and is addressed in this paper. Research gaps were identified in the areas of suitable forms of graphene materials synthesis, dispersion, geopolymer binder type, mixing design, microstructure, and acceptance as well as implementation. The review clarifies those challenging aspects and presents guided solutions for developing sustainable, resilient, and efficient geopolymer matrix-based future materials

    Preparation of graphene oxide/chitosan/ferrite nanocomposite for Chromium (VI) removal from aqueous solution

    No full text
    A magnetically modified graphene oxide/chitosan/ferrite (GCF) nanocomposite material was synthesized and exploited for removal of Chromium(VI) from aqueous solution. The GCF nanocomposite material was characterized by powder-X-ray diffraction (powder-XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope- energy dispersive X-ray (SEM-EDX) analysis, transmission electron microscopy (TEM) thermogravimetric analysis (TGA), UV–vis diffusive reflectance spectra and Brunauer–Emmett–Teller (BET) analysis. The effect of pH, adsorbent dose, contact time and initial Cr(VI) metal ion concentration were studied in batch process. The GCF nanocomposite material showed an adsorption capacity of 270.27 mg g−1 for Cr(VI) at pH 2.0. The adsorption mechanism of GCF adsorbent material was well described by Langmuir isotherm and pseudo second order kinetic model, with a high regression coefficient
    corecore