294 research outputs found

    Blockade of insulin-like growth factors increases efficacy of paclitaxel in metastatic breast cancer.

    Get PDF
    Breast cancer remains the leading cause of cancer death in women owing to metastasis and the development of resistance to established therapies. Macrophages are the most abundant immune cells in the breast tumor microenvironment and can both inhibit and support cancer progression. Thus, gaining a better understanding of how macrophages support cancer could lead to the development of more effective therapies. In this study, we find that breast cancer-associated macrophages express high levels of insulin-like growth factors 1 and 2 (IGFs) and are the main source of IGFs within both primary and metastatic tumors. In total, 75% of breast cancer patients show activation of insulin/IGF-1 receptor signaling and this correlates with increased macrophage infiltration and advanced tumor stage. In patients with invasive breast cancer, activation of Insulin/IGF-1 receptors increased to 87%. Blocking IGF in combination with paclitaxel, a chemotherapeutic agent commonly used to treat breast cancer, showed a significant reduction in tumor cell proliferation and lung metastasis in pre-clinical breast cancer models compared to paclitaxel monotherapy. Our findings provide the rationale for further developing the combination of paclitaxel with IGF blockers for the treatment of invasive breast cancer, and Insulin/IGF1R activation and IGF+ stroma cells as potential biomarker candidates for further evaluation

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Ultra-Sensitivity Glucose Sensor Based on Field Emitters

    Get PDF
    A new glucose sensor based on field emitter of ZnO nanorod arrays (ZNA) was fabricated. This new type of ZNA field emitter-based sensor shows high sensitivity with experimental limit of detection of 1 nM glucose solution and a detection range from 1 nM to 50 μM in air at room temperature, which is lower than that of glucose sensors based on surface plasmon resonance spectroscopy, fluorescence signal transmission, and electrochemical signal transduction. The new glucose sensor provides a key technique for promising consuming application in biological system for detecting low levels of glucose on single cells or bacterial cultures

    Synthesis of Novel Flower-Like Zn(OH)F via a Microwave-Assisted Ionic Liquid Route and Transformation into Nanoporous ZnO by Heat Treatment

    Get PDF
    Zinc hydroxide fluoride (Zn(OH)F) with novel flower-like morphology has been prepared via a microwave-assisted ionic liquid route. The flower-like Zn(OH)F particle has six petals and every petal is composed of lots of acicular nano-structure. Nanoporous ZnO is obtained by thermal decomposition of as-prepared Zn(OH)F in air, and the flower-like morphology is well retained. In the process of synthesis, ionic liquid 1-Butyl-3-methylimidazolium tetrafluoroborate is used as both the reactant and the template

    MiR-128 Inhibits Tumor Growth and Angiogenesis by Targeting p70S6K1

    Get PDF
    MicroRNAs are a class of small noncoding RNAs that function as critical gene regulators through targeting mRNAs for translational repression or degradation. In this study, we showed that miR-128 expression levels were decreased in glioma, and identified p70S6K1 as a novel direct target of miR-128. Overexpression of miR-128 suppressed p70S6K1 and its downstream signaling molecules such as HIF-1 and VEGF expression, and attenuated cell proliferation, tumor growth and angiogenesis. Forced expression of p70S6K1 can partly rescue the inhibitory effect of miR-128 in the cells. Taken together, these findings will shed light to the role and mechanism of miR-128 in regulating glioma tumor angiogenesis via miR-128/p70S6K1 axis, and miR-128 may serve as a potential therapeutic target in glioma in the future
    corecore