339 research outputs found

    Synchrotron emission from secondary leptons in microquasar jets

    Get PDF
    We present a model to estimate the synchrotron radio emission generated in microquasar (MQ) jets due to secondary pairs created via decay of charged pions produced in proton-proton collisions between stellar wind ions and jet relativistic protons. Signatures of electrons/positrons are obtained from consistent particle energy distributions that take into account energy losses due to synchrotron and inverse Compton (IC) processes, as well as adiabatic expansion. The space parameter for the model is explored and the corresponding spectral energy distributions (SEDs) are presented. We conclude that secondary leptonic emission represents a significant though hardly dominant contribution to the total radio emission in MQs, with observational consequences that can be used to test some still unknown processes occurring in these objects as well as the nature of the matter outflowing in their jets

    Growth, immunity and ammonia excretion of albino and normal Apostichopus japonicus (Selenka) feeding with various experimental diets

    Get PDF
    An experiment was conducted to evaluate the effects of six experimental diets on growth performance, ammonia excretion and immunity of albino and normal Apostichopus japonicus. A factorial design was used, the factors being type of diets (six levels) and colour of A. japonicus (two levels). A total of 30 randomly selected albino A. japonicus were housed in each (60 Ă— 50 Ă— 30 cm3) of 18 blue plastic aquaria to form six groups in triplicate, and the same set-up was used for the normal A. japonicus. Each group of animals was fed with one of the six experimental diets. Apparent dry matter digestibility (ADMD) and apparent crude protein digestibility (ACPD) were analysed using acid-insoluble ash (AIA) content method. At the end of the experiment, all A. japonicus were harvested and weighed to calculate growth parameters. After weighing, six individuals from each aquarium were randomly sampled for immune indices. Results indicated that all growth parameters of A. japonicus increased with decreasing nutrient content in their diets (p < .01), whereas an opposite result was observed in case of the ammonia-nitrogen production by A. japonicus. Normal A. japonicus grew better (p < .01) and produced lower (p < .01) quantity of ammonia nitrogen compared to the albino A. japonicus. Immunity particularly superoxide dismutase and lysozyme activities was higher (p < .05) in normal compared to albino A. japonicus. Considering all measured variables, D1 (diet containing crude protein, crude lipid, carbohydrate and crude ash 51.8, 8.7, 231.3, 708.2 g/kg, respectively) was the best diet among all experimental diets. More research is still needed to optimize nutrients in the diet of A. japonicus, as this study does not provide information about critical threshold level of nutrients in diets. Until then, diet D1 can be recommended for A. japonicus aquaculture

    Physics of Solar Prominences: I - Spectral Diagnostics and Non-LTE Modelling

    Full text link
    This review paper outlines background information and covers recent advances made via the analysis of spectra and images of prominence plasma and the increased sophistication of non-LTE (ie when there is a departure from Local Thermodynamic Equilibrium) radiative transfer models. We first describe the spectral inversion techniques that have been used to infer the plasma parameters important for the general properties of the prominence plasma in both its cool core and the hotter prominence-corona transition region. We also review studies devoted to the observation of bulk motions of the prominence plasma and to the determination of prominence mass. However, a simple inversion of spectroscopic data usually fails when the lines become optically thick at certain wavelengths. Therefore, complex non-LTE models become necessary. We thus present the basics of non-LTE radiative transfer theory and the associated multi-level radiative transfer problems. The main results of one- and two-dimensional models of the prominences and their fine-structures are presented. We then discuss the energy balance in various prominence models. Finally, we outline the outstanding observational and theoretical questions, and the directions for future progress in our understanding of solar prominences.Comment: 96 pages, 37 figures, Space Science Reviews. Some figures may have a better resolution in the published version. New version reflects minor changes brought after proof editin

    Search for Higgs bosons decaying to tautau pairs in ppbar collisions at sqrt(s) = 1.96 TeV

    Get PDF
    We present a search for the production of neutral Higgs bosons decaying into tautau pairs in ppbar collisions at a center-of-mass energy of 1.96 TeV. The data, corresponding to an integrated luminosity of 5.4 fb-1, were collected by the D0 experiment at the Fermilab Tevatron Collider. We set upper limits at the 95% C.L. on the product of production cross section and branching ratio for a scalar resonance decaying into tautau pairs, and we then interpret these limits as limits on the production of Higgs bosons in the minimal supersymmetric standard model (MSSM) and as constraints in the MSSM parameter space.Comment: 7 pages, 5 figures, submitted to PL

    Limits on anomalous trilinear gauge boson couplings from WW, WZ and Wgamma production in pp-bar collisions at sqrt{s}=1.96 TeV

    Get PDF
    We present final searches of the anomalous gammaWW and ZWW trilinear gauge boson couplings from WW and WZ production using lepton plus dijet final states and a combination with results from Wgamma, WW, and WZ production with leptonic final states. The analyzed data correspond to up to 8.6/fb of integrated luminosity collected by the D0 detector in pp-bar collisions at sqrt{s}=1.96 TeV. We set the most stringent limits at a hadron collider to date assuming two different relations between the anomalous coupling parameters Delta\kappa_\gamma, lambda, and Delta g_1^Z for a cutoff energy scale Lambda=2 TeV. The combined 68% C.L. limits are -0.057<Delta\kappa_\gamma<0.154, -0.015<lambda<0.028, and -0.008<Delta g_1^Z<0.054 for the LEP parameterization, and -0.007<Delta\kappa<0.081 and -0.017<lambda<0.028 for the equal couplings parameterization. We also present the most stringent limits of the W boson magnetic dipole and electric quadrupole moments.Comment: 10 pages, 5 figures, submitted to PL

    Measurement of the photon+b+b-jet production differential cross section in ppˉp\bar{p} collisions at \sqrt{s}=1.96~\TeV

    Get PDF
    We present measurements of the differential cross section dsigma/dpT_gamma for the inclusive production of a photon in association with a b-quark jet for photons with rapidities |y_gamma|< 1.0 and 30<pT_gamma <300 GeV, as well as for photons with 1.5<|y_gamma|< 2.5 and 30< pT_gamma <200 GeV, where pT_gamma is the photon transverse momentum. The b-quark jets are required to have pT>15 GeV and rapidity |y_jet| < 1.5. The results are based on data corresponding to an integrated luminosity of 8.7 fb^-1, recorded with the D0 detector at the Fermilab Tevatron ppˉp\bar{p} Collider at sqrt(s)=1.96 TeV. The measured cross sections are compared with next-to-leading order perturbative QCD calculations using different sets of parton distribution functions as well as to predictions based on the kT-factorization QCD approach, and those from the Sherpa and Pythia Monte Carlo event generators.Comment: 10 pages, 9 figures, submitted to Phys. Lett.

    Modeling the Subsurface Structure of Sunspots

    Get PDF
    While sunspots are easily observed at the solar surface, determining their subsurface structure is not trivial. There are two main hypotheses for the subsurface structure of sunspots: the monolithic model and the cluster model. Local helioseismology is the only means by which we can investigate subphotospheric structure. However, as current linear inversion techniques do not yet allow helioseismology to probe the internal structure with sufficient confidence to distinguish between the monolith and cluster models, the development of physically realistic sunspot models are a priority for helioseismologists. This is because they are not only important indicators of the variety of physical effects that may influence helioseismic inferences in active regions, but they also enable detailed assessments of the validity of helioseismic interpretations through numerical forward modeling. In this paper, we provide a critical review of the existing sunspot models and an overview of numerical methods employed to model wave propagation through model sunspots. We then carry out an helioseismic analysis of the sunspot in Active Region 9787 and address the serious inconsistencies uncovered by \citeauthor{gizonetal2009}~(\citeyear{gizonetal2009,gizonetal2009a}). We find that this sunspot is most probably associated with a shallow, positive wave-speed perturbation (unlike the traditional two-layer model) and that travel-time measurements are consistent with a horizontal outflow in the surrounding moat.Comment: 73 pages, 19 figures, accepted by Solar Physic

    Measurement of three-jet differential cross sections d sigma-3jet / d M-3jet in p anti-p collisions at sqrt(s)=1.96 TeV

    Full text link
    We present the first measurement of the inclusive three-jet differential cross section as a function of the invariant mass of the three jets with the largest transverse momenta in an event in p anti-p collisions at sqrt(s) = 1.96 TeV. The measurement is made in different rapidity regions and for different jet transverse momentum requirements and is based on a data set corresponding to an integrated luminosity of 0.7 fb^{-1} collected with the D0 detector at the Fermilab Tevatron Collider. The results are used to test the three-jet matrix elements in perturbative QCD calculations at next-to-leading order in the strong coupling constant. The data allow discrimination between parametrizations of the parton distribution functions of the proton.Comment: 10 pages, 4 figures, 2 tables, submitted to Phys. Lett. B, corrected chi2 values for NNPD

    Measurements of inclusive W+jets production rates as a function of jet transverse momentum in ppbar collisions at sqrt{s}=1.96 TeV

    Full text link
    This Letter describes measurements of inclusive W (--> e nu) + n jet cross sections (n = 1-4), presented as total inclusive cross sections and differentially in the nth jet transverse momentum. The measurements are made using data corresponding to an integrated luminosity of 4.2 fb-1 collected by the D0 detector at the Fermilab Tevatron Collider, and achieve considerably smaller uncertainties on W +jets production cross sections than previous measurements. The measurements are compared to next-to-leading order perturbative QCD (pQCD) calculations in the n =1-3 jet multiplicity bins and to leading order pQCD calculations in the 4-jet bin. The measurements are generally in agreement with pQCD predictions, although certain regions of phase space are identified where the calculations could be improved

    Measurement of the ttbar production cross section using dilepton events in ppbar collisions

    Get PDF
    We present a measurement of the ttbar production cross section sigma(ttbar) in ppbar collisions at sqrt{s} = 1.96 TeV using 5.4 fb-1 of integrated luminosity collected with the D0 detector. We consider final states with at least two jets and two leptons (ee, emu, mumu), and events with one jet for the the emu final state as well. The measured cross section is sigma(ttbar)= 7.36 +0.90-0.79 (stat + syst) pb. This result combined with the cross section measurement in the lepton + jets final state yields sigma(ttbar)=7.56 +0.63-0.56 (stat + syst) pb, which agrees with the standard model expectation. The relative precision of 8% of this measurement is comparable to the latest theoretical calculations.Comment: 9 pages, published in Phys. Lett.
    • …
    corecore