38 research outputs found
Tropospheric phase delay in interferometric synthetic aperture radar estimated from meteorological model and multispectral imagery
ENVISAT Medium Resolution Imaging Spectrometer Instrument (MERIS) multispectral data and the mesoscale meteorological model MM5 are used to estimate the tropospheric phase delay in synthetic aperture radar (SAR) interferograms. MERIS images acquired simultaneously with ENVISAT Advanced Synthetic Aperture Radar data provide an estimate of the total water vapor content W limited to cloud-free areas based on spectral bands ratio (accuracy 0.17 g cm^(−2) and ground resolution 300 m). Maps of atmospheric delay, 2 km in ground resolution, are simulated from MM5. A priori pertinent cumulus parameterization and planetary boundary layer options of MM5 yield near-equal phase correction efficiency. Atmospheric delay derived from MM5 is merged with available MERIS W product. Estimates of W measured from MERIS and modeled from MM5 are shown to be consistent and unbiased and differ by ~0.2 g cm^(−2) (RMS). We test the approach on data over the Lebanese ranges where active tectonics might contribute to a measurable SAR signal that is obscured by atmospheric effects. Local low-amplitude (1 rad) atmospheric oscillations with a 2.25 km wavelength on the interferograms are recovered from MERIS with an accuracy of 0.44 rad or 0.03 g cm^(−2). MERIS water product overestimates W in the clouds shadow due to mismodeling of multiple scattering and underestimates W on pixels with undetected semitransparent clouds. The proposed atmospheric filter models dynamic atmospheric signal which cannot be recovered by previous filtering techniques which are based on a static atmospheric correction. Analysis of filter efficiency with spatial wavelength shows that ~43% of the atmospheric signal is removed at all wavelengths
Comparison of Harmonic, Geometric and Arithmetic means for change detection in SAR time series
International audienceThe amplitude distribution in a SAR image can present a heavy tail. Indeed, very high-valued outliers can be observed. In this paper, we propose the usage of the Harmonic, Geometric and Arithmetic temporal means for amplitude statistical studies along time. In general, the arithmetic mean is used to compute the mean amplitude of time series. In this study, we will show that comparing the behaviour of the Harmonic, Geometric and Arithmetic means, enables a change detection method along SAR time series
Three decades of coastal subsidence in the slow-moving Nice Côte d'Azur Airport area (France) revealed by InSAR (interferometric synthetic-aperture radar): insights into the deformation mechanism
Coastal areas can be tremendously biodiverse and host a substantial part of the world's population and critical infrastructure. However, there are often fragile environments that face various hazards such as flooding, coastal erosion, land salinization or pollution, earthquake-induced land motion, or anthropogenic processes. In this article, we investigate the stability of the Nice Côte d'Azur Airport, which has been built on reclaimed land in the Var River delta (French Riviera, France). This infrastructure, as well as the ongoing subsidence of the airport runways, has been a permanent concern since the partial collapse of the platform in 1979. Here, we used the full archive of ESA SAR (synthetic-aperture radar) images from 1992 to 2020 to comprehensively monitor the dynamics of the airport subsidence. We found that the maximum downward motion rate has been slowing down from 16 mm yr−1 in the 1990s to 8 mm yr−1 today. However, sediment compaction is still active, and an acceleration phase of the continuous creep leading to a potential failure of a part of the platform cannot be excluded. Our study demonstrates the importance of remotely monitoring of the platform to better understand the motion of coastal land, which will ultimately help evaluate and reduce associated hazards.</p
Asperities and barriers on the seismogenic zone in North Chile: state-of-the-art after the 2007 Mw 7.7 Tocopilla earthquake inferred by GPS and InSAR data
The Mw 7.7 2007 November 14 earthquake had an epicentre located close to the city of Tocopilla, at the southern end of a known seismic gap in North Chile. Through modelling of Global Positioning System (GPS) and radar interferometry (InSAR) data, we show that this event ruptured the deeper part of the seismogenic interface (30–50 km) and did not reach the surface. The earthquake initiated at the hypocentre and was arrested ~150 km south, beneath the Mejillones Peninsula, an area already identified as an important structural barrier between two segments of the Peru–Chile subduction zone. Our preferred models for the Tocopilla main shock show slip concentrated in two main asperities, consistent with previous inversions of seismological data. Slip appears to have propagated towards relatively shallow depths at its southern extremity, under the Mejillones Peninsula. Our analysis of post-seismic deformation suggests that small but still significant post-seismic slip occurred within the first 10 d after the main shock, and that it was mostly concentrated at the southern end of the rupture. The post-seismic deformation occurring in this period represents ~12–19 per cent of the coseismic deformation, of which ~30–55 per cent has been released aseismically. Post-seismic slip appears to concentrate within regions that exhibit low coseismic slip, suggesting that the afterslip distribution during the first month of the post-seismic interval complements the coseismic slip. The 2007 Tocopilla earthquake released only ~2.5 per cent of the moment deficit accumulated on the interface during the past 130 yr and may be regarded as a possible precursor of a larger subduction earthquake rupturing partially or completely the 500-km-long North Chile seismic gap
Evolution and dynamics of a fold-thrust belt: The Sulaiman Range of Pakistan
We present observations and models of the Sulaiman Range of western Pakistan that shed
new light on the evolution and deformation of fold-thrust belts. Earthquake source inversions
show that the seismic deformation in the range is concentrated in the thick pile of sediments
overlying the underthrusting lithosphere of the Indian subcontinent. The slip vectors of the
earthquakes vary in strike around the margin of the range, in tandem with the shape of the
topography, suggesting that gravitational driving forces arising from the topography play an
important role in governing the deformation of the region. Numerical models suggest that the
active deformation, and the extreme plan-view curvature of the range, are governed by the
presence of weak sediments in a pre-existing basin on the underthrusting Indian Plate. These
sediments affect the stress-state in the over-riding mountain range and allow for the rapid
propagation of the nose of the range and the development of extreme curvature and laterally
varying surface gradients.This study forms part of the NERC- and ESRC-funded project
‘Earthquakes Without Frontiers’. Our thanks go to Jerome Neufeld
for many interesting coffee-time discussions, and James Jackson
and Dan McKenzie, for comments on the manuscript. We thank
Chris Morley and one anonymous reviewer for helpful comments
on the manuscript.This article has been accepted for publication in in Geophysical Journal International ©: (2015) 201(2): 683-710, doi: 10.1093/gji/ggv005 , First published online March 9, 2015, Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved
Limitations of rupture forecasting exposed by instantaneously triggered earthquake doublet
Earthquake hazard assessments and rupture forecasts are based on the potential length of seismic rupture and whether or not slip is arrested at fault segment boundaries. Such forecasts do not generally consider that one earthquake can trigger a second large event, near-instantaneously, at distances greater than a few kilometers. Here we present a geodetic and seismological analysis of a magnitude 7.1 intra-continental earthquake that occurred in Pakistan in 1997. We find that the earthquake, rather than a single event as hitherto assumed, was in fact an earthquake doublet: initial rupture on a shallow, blind 2 reverse fault was followed just 19 seconds later by a second rupture on a separate reverse fault 50 km away. Slip on the second fault increased the total seismic moment by half, and doubled both the combined event duration and the area of maximum ground shaking. We infer that static Coulomb stresses at the initiation location of the second earthquake were probably reduced as a result of the first. Instead, we suggest that a dynamic triggering mechanism is likely, although the responsible seismic wave phase is unclear. Our results expose a flaw in earthquake rupture forecasts that disregard cascading, multiple-fault ruptures of this type
De la verruga ou maladie de Carrion
Thèse : Médecine : Université de Bordeaux : 1898N° d'ordre : 3
Application des lois de Meijer à l'imagerie RSO (Radar à Synthèse d'Ouverture) : Calcul d'images "multi-vues géométriques"
International audienc