356 research outputs found
Flow Fields and Agents for Immersive Interaction in Mutator VR: Vortex
This paper discusses the challenges in creating Mutator VR: Vortex, a virtual reality experience based on interaction with semi-autonomous, organically-inspired agents. The work allows the immersant to morph between a vast number of procedurally- generated microworlds each with its own visual elements, sounds, agent dynamics, and user interactions. We outline two methods used for procedural generation that are based fundamentally on integration of di?erent modalities. Curve-based synthesis is used for simultaneous generation of entity sounds and shape and ?ow grains are employed to determine both agent dynamics and user interaction with the agents
The collapse of intermediate structures?
How can we explain the rise of President Trump and the attraction of his campaign behavior before and since he took office? We argue here that the collapse of ‘intermediate structures’ has been a key factor; that the associations and groups which are building blocks of pluralistic politics have been eroded to such an extent that Trump’s personality politics have been able to take over the political stage
Planetary Candidates Observed by Kepler VI: Planet Sample from Q1-Q16 (47 Months)
\We present the sixth catalog of Kepler candidate planets based on nearly 4
years of high precision photometry. This catalog builds on the legacy of
previous catalogs released by the Kepler project and includes 1493 new Kepler
Objects of Interest (KOIs) of which 554 are planet candidates, and 131 of these
candidates have best fit radii <1.5 R_earth. This brings the total number of
KOIs and planet candidates to 7305 and 4173 respectively. We suspect that many
of these new candidates at the low signal-to-noise limit may be false alarms
created by instrumental noise, and discuss our efforts to identify such
objects. We re-evaluate all previously published KOIs with orbital periods of
>50 days to provide a consistently vetted sample that can be used to improve
planet occurrence rate calculations. We discuss the performance of our planet
detection algorithms, and the consistency of our vetting products. The full
catalog is publicly available at the NASA Exoplanet Archive.Comment: 18 pages, to be published in the Astrophysical Journal Supplement
Serie
International Coercion, Emulation and Policy Diffusion: Market-Oriented Infrastructure Reforms, 1977-1999
Why do some countries adopt market-oriented reforms such as deregulation, privatization and liberalization of competition in their infrastructure industries while others do not? Why did the pace of adoption accelerate in the 1990s? Building on neo-institutional theory in sociology, we argue that the domestic adoption of market-oriented reforms is strongly influenced by international pressures of coercion and emulation. We find robust support for these arguments with an event-history analysis of the determinants of reform in the telecommunications and electricity sectors of as many as 205 countries and territories between 1977 and 1999. Our results also suggest that the coercive effect of multilateral lending from the IMF, the World Bank or Regional Development Banks is increasing over time, a finding that is consistent with anecdotal evidence that multilateral organizations have broadened the scope of the “conditionality” terms specifying market-oriented reforms imposed on borrowing countries. We discuss the possibility that, by pressuring countries into policy reform, cross-national coercion and emulation may not produce ideal outcomes.http://deepblue.lib.umich.edu/bitstream/2027.42/40099/3/wp713.pd
Molecular mechanism by which the nucleoid occlusion factor, SlmA, keeps cytokinesis in check
Nucleoid occlusion (NO) restricts bacterial cell division to prevent chromosome guillotining in the cell midzone when replication or segregation is delayed. Structural work suggests that the NO factor SlmA (synthetic lethal with a defective Min system) interferes with formation of the cytokinetic Z-ring by altering associations between FtsZ protofilaments
A new structural framework for integrating replication protein A into DNA processing machinery
By coupling the protection and organization of single-stranded DNA (ssDNA) with recruitment and alignment of DNA processing factors, replication protein A (RPA) lies at the heart of dynamic multi-protein DNA processing machinery. Nevertheless, how RPA coordinates biochemical functions of its eight domains remains unknown. We examined the structural biochemistry of RPA’s DNA-binding activity, combining small-angle X-ray and neutron scattering with all-atom molecular dynamics simulations to investigate the architecture of RPA’s DNA-binding core. The scattering data reveal compaction promoted by DNA binding; DNA-free RPA exists in an ensemble of states with inter-domain mobility and becomes progressively more condensed and less dynamic on binding ssDNA. Our results contrast with previous models proposing RPA initially binds ssDNA in a condensed state and becomes more extended as it fully engages the substrate. Moreover, the consensus view that RPA engages ssDNA in initial, intermediate and final stages conflicts with our data revealing that RPA undergoes two (not three) transitions as it binds ssDNA with no evidence for a discrete intermediate state. These results form a framework for understanding how RPA integrates the ssDNA substrate into DNA processing machinery, provides substrate access to its binding partners and promotes the progression and selection of DNA processing pathways
Understanding Gesture Expressivity through Muscle Sensing
Expressivity is a visceral capacity of the human body. To understand what makes a gesture expressive, we need to consider not only its spatial placement and orientation, but also its dynamics and the mechanisms enacting them. We start by defining gesture and gesture expressivity, and then present fundamental aspects of muscle activity and ways to capture information through electromyography (EMG) and mechanomyography (MMG). We present pilot studies that inspect the ability of users to control spatial and temporal variations of 2D shapes and that use muscle sensing to assess expressive information in gesture execution beyond space and time. This leads us to the design of a study that explores the notion of gesture power in terms of control and sensing. Results give insights to interaction designers to go beyond simplistic gestural interaction, towards the design of interactions that draw upon nuances of expressive gesture
Parent-Led Activity and Nutrition (plan) for Healthy Living: Design and Methods
Child obesity has become an important public health concern, especially in rural areas. Primary care providers are well positioned to intervene with children and their parents, but encounter many barriers to addressing child overweight and obesity. This paper describes the design and methods of a cluster-randomized controlled trial to evaluate a parent-mediated approach utilizing physician\u27s brief motivational interviewing and parent group sessions to treat child (ages 5–11 years) overweight and obesity in the primary care setting in Southern Appalachia. Specific aims of this pilot project will be 1) to establish a primary care based and parent-mediated childhood overweight intervention program in the primary care setting, 2) to explore the efficacy of this intervention in promoting healthier weight status and health behaviors of children, and 3) to examine the acceptability and feasibility of the approach among parents and primary care providers. If proven to be effective, this approach may be an exportable model to other primary care practices
Sixteen diverse laboratory mouse reference genomes define strain-specific haplotypes and novel functional loci.
We report full-length draft de novo genome assemblies for 16 widely used inbred mouse strains and find extensive strain-specific haplotype variation. We identify and characterize 2,567 regions on the current mouse reference genome exhibiting the greatest sequence diversity. These regions are enriched for genes involved in pathogen defence and immunity and exhibit enrichment of transposable elements and signatures of recent retrotransposition events. Combinations of alleles and genes unique to an individual strain are commonly observed at these loci, reflecting distinct strain phenotypes. We used these genomes to improve the mouse reference genome, resulting in the completion of 10 new gene structures. Also, 62 new coding loci were added to the reference genome annotation. These genomes identified a large, previously unannotated, gene (Efcab3-like) encoding 5,874 amino acids. Mutant Efcab3-like mice display anomalies in multiple brain regions, suggesting a possible role for this gene in the regulation of brain development
- …