11 research outputs found

    Determinants of Deadwood-Inhabiting Fungal Communities in Temperate Forests: Molecular Evidence From a Large Scale Deadwood Decomposition Experiment

    Get PDF
    Despite the important role of wood-inhabiting fungi (WIF) in deadwood decomposition, our knowledge of the factors shaping the dynamics of their species richness and community composition is scarce. This is due to limitations regarding the resolution of classical methods used for characterizing WIF communities and to a lack of well-replicated long-term experiments with sufficient numbers of tree species. Here, we used a large scale experiment with logs of 11 tree species at an early stage of decomposition, distributed across three regions of Germany, to identify the factors shaping WIF community composition and Operational Taxonomic Unit (OTU) richness using next generation sequencing. We found that tree species identity was the most significant factor, corresponding to (P < 0.001) and explaining 10% (representing 48% of the explainable variance) of the overall WIF community composition. The next important group of variables were wood-physicochemical properties, of which wood pH was the only factor that consistently corresponded to WIF community composition. For overall WIF richness patterns, we found that approximately 20% of the total variance was explained by wood N content, location, tree species identity and wood density. It is noteworthy that the importance of determinants of WIF community composition and richness appeared to depend greatly on tree species group (broadleaved vs. coniferous) and it differed between the fungal phyla Ascomycota and Basidiomycota

    Can we use environmental DNA as holotypes?

    No full text

    Considerations and consequences of allowing DNA sequence data as types of fungal taxa

    Get PDF
    Nomenclatural type definitions are one of the most important concepts in biological nomenclature. Being physical objects that can be re-studied by other researchers, types permanently link taxonomy (an artificial agreement to classify biological diversity) with nomenclature (an artificial agreement to name biological diversity). Two proposals to amend the International Code of Nomenclature for algae, fungi, and plants (ICN), allowing DNA sequences alone (of any region and extent) to serve as types of taxon names for voucherless fungi (mainly putative taxa from environmental DNA sequences), have been submitted to be voted on at the 11th International Mycological Congress (Puerto Rico, July 2018). We consider various genetic processes affecting the distribution of alleles among taxa and find that alleles may not consistently and uniquely represent the species within which they are contained. Should the proposals be accepted, the meaning of nomenclatural types would change in a fundamental way from physical objects as sources of data to the data themselves. Such changes are conducive to irreproducible science, the potential typification on artefactual data, and massive creation of names with low information content, ultimately causing nomenclatural instability and unnecessary work for future researchers that would stall future explorations of fungal diversity. We conclude that the acceptance of DNA sequences alone as types of names of taxa, under the terms used in the current proposals, is unnecessary and would not solve the problem of naming putative taxa known only from DNA sequences in a scientifically defensible way. As an alternative, we highlight the use of formulas for naming putative taxa (candidate taxa) that do not require any modification of the ICN.Peer reviewe
    corecore