47 research outputs found
Two approaches to testing general relativity in the strong-field regime
Observations of compact objects in the electromagnetic spectrum and the
detection of gravitational waves from them can lead to quantitative tests of
the theory of general relativity in the strong-field regime following two very
different approaches. In the first approach, the general relativistic field
equations are modified at a fundamental level and the magnitudes of the
potential deviations are constrained by comparison with observations. In the
second approach, the exterior spacetimes of compact objects are parametrized in
a phenomenological way, the various parameters are measured observationally,
and the results are finally compared against the general relativistic
predictions. In this article, I discuss the current status of both approaches,
focusing on the lessons learned from a large number of recent investigations.Comment: To appear in the proceedings of the conference New Developments in
Gravit
Non-relativistic limit of Randall-Sundrum model: solutions, applications and constraints
In the Randall-Sundrum model with one brane, we found the approximate and
exact solutions for gravitational potentials and accelerations of test bodies
in these potentials for different geometrical configurations. We applied these
formulas for calculation of the gravitational interaction between two spheres
and found the approximate and exact expressions for the relative force
corrections to the Newton's gravitational force. We demonstrated that the
difference between relative force corrections for the approximate and exact
cases increases with the parameter (for the fixed distance between
centers of the spheres). On the other hand, this difference increases with
decreasing of the distance between the centers of the spheres (for the fixed
curvature scale parameter ). We got the upper limit for the curvature scale
parameter m. For these values of , the difference
between the approximate and exact solutions is negligible.Comment: LaTex 11 pages, 3 figure
Strong Gravitational Lensing of Quasi-Kerr Compact Object with Arbitrary Quadrupole Moments
We study the strong gravitational lensing on the equatorial plane of a
quasi-Kerr compact object with arbitrary quadrupole moments which can be used
to model the super-massive central object of the galaxy. We find that, when the
quadrupolar correction parameter takes the positive (negative) value, the
photon-sphere radius , the minimum impact parameter , the
coefficient , the relative magnitudes and the angular position
of the relativistic images are larger (smaller) than the
results obtained in the Kerr black hole, but the coefficient , the
deflection angle and the angular separation are smaller
(larger) than that in the Kerr black hole. These features may offer a way to
probe special properties for some rotating compact objects by the astronomical
instruments in the future.Comment: 17 pages, 4 figures. Accepted for publication in JHE
Binary black hole shadows, chaotic scattering and the Cantor set
We investigate the qualitative features of binary black hole shadows using the model of two
extremally charged black holes in static equilibrium (a Majumdar–Papapetrou solution). Our
perspective is that binary spacetimes are natural exemplars of chaotic scattering, because they
admit more than one fundamental null orbit, and thus an uncountably infinite set of perpetual null
orbits which generate scattering singularities in initial data. Inspired by the three-disc model, we
develop an appropriate symbolic dynamics to describe planar null geodesics on the double black
hole spacetime. We show that a one-dimensional (1D) black hole shadow may constructed through
an iterative procedure akin to the construction of the Cantor set; thus the 1D shadow is self-similar.
Next, we study non-planar rays, to understand how angular momentum affects the existence and
properties of the fundamental null orbits. Taking slices through 2D shadows, we observe three
types of 1D shadow: regular, Cantor-like, and highly chaotic. The switch from Cantor-like to
regular occurs where outer fundamental orbits are forbidden by angular momentum. The highly
chaotic part is associated with an unexpected feature: stable and bounded null orbits, which exist
around two black holes of equal mass M separated by a1 < a < √
2a1, where a1 = 4M/√
27. To
show how this possibility arises, we define a certain potential function and classify its stationary
points. We conjecture that the highly chaotic parts of the 2D shadow possess the Wada property.
Finally, we consider the possibility of following null geodesics through event horizons, and chaos in
the maximally extended spacetime
GYOTO: a new general relativistic ray-tracing code
GYOTO, a general relativistic ray-tracing code, is presented. It aims at
computing images of astronomical bodies in the vicinity of compact objects, as
well as trajectories of massive bodies in relativistic environments. This code
is capable of integrating the null and timelike geodesic equations not only in
the Kerr metric, but also in any metric computed numerically within the 3+1
formalism of general relativity. Simulated images and spectra have been
computed for a variety of astronomical targets, such as a moving star or a
toroidal accretion structure. The underlying code is open source and freely
available. It is user-friendly, quickly handled and very modular so that
extensions are easy to integrate. Custom analytical metrics and astronomical
targets can be implemented in C++ plug-in extensions independent from the main
code.Comment: 20 pages, 11 figure
Foundations of Black Hole Accretion Disk Theory
This review covers the main aspects of black hole accretion disk theory. We
begin with the view that one of the main goals of the theory is to better
understand the nature of black holes themselves. In this light we discuss how
accretion disks might reveal some of the unique signatures of strong gravity:
the event horizon, the innermost stable circular orbit, and the ergosphere. We
then review, from a first-principles perspective, the physical processes at
play in accretion disks. This leads us to the four primary accretion disk
models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin)
disks, slim disks, and advection-dominated accretion flows (ADAFs). After
presenting the models we discuss issues of stability, oscillations, and jets.
Following our review of the analytic work, we take a parallel approach in
reviewing numerical studies of black hole accretion disks. We finish with a few
select applications that highlight particular astrophysical applications:
measurements of black hole mass and spin, black hole vs. neutron star accretion
disks, black hole accretion disk spectral states, and quasi-periodic
oscillations (QPOs).Comment: 91 pages, 23 figures, final published version available at
http://www.livingreviews.org/lrr-2013-
The Large Observatory for x-ray timing
The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supra-nuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m2 effective area, 2-30 keV, 240 eV spectral resolution, 1° collimated field of view) and a WideField Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g. GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the status of the mission at the end of its Phase A study
The LOFT mission concept: a status update
The Large Observatory For x-ray Timing (LOFT) is a mission concept which was proposed to ESA as M3 and M4 candidate in the framework of the Cosmic Vision 2015-2025 program. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument and the uniquely large field of view of its wide field monitor, LOFT will be able to study the behaviour of matter in extreme conditions such as the strong gravitational field in the innermost regions close to black holes and neutron stars and the supra-nuclear densities in the interiors of neutron stars. The science payload is based on a Large Area Detector (LAD, >8m2 effective area, 2-30 keV, 240 eV spectral resolution, 1 degree collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g., GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the current technical and programmatic status of the mission