150 research outputs found

    Identifikation molekularer Marker des Prostatakarzinoms unter Verwendung der Gewebe-Mikroarray-Technologie

    Get PDF
    Prostatakrebs ist die zweithĂ€ufigste krebsbedingte Todesursache bei MĂ€nnern der westlichen Welt. Obwohl immer mehr Prostatakarzinome in frĂŒhen Stadien diagnostiziert werden, ist die MortalitĂ€tsrate nicht entsprechend gesunken, da eine kurative Therapie fortgeschrittener, metastasierter Prostatakarzinome bisher nicht möglich ist. Die AufklĂ€rung der biologischen Prozesse, welche an der Prostatakarzinogenese beteiligt sind, stellt die Grundlage zur Entwicklung neuer molekularer Marker und Therapeutika dar. Die Verwendung von Mikroarray-Technologien ermöglicht die Identifikation einer zunehmenden Anzahl an Kandidatengenen, deren Bedeutung fĂŒr die Tumorprogression und Prognose z.B. mittels Gewebe-Mikroarrays an einem großen Tumorkollektiv validiert werden. In der vorliegenden Studie wurden Gewebe-Mikroarrays hergestellt, welche zur Untersuchung von Änderungen der Proteinexpression in unterschiedlichen Stadien der Progression des Prostatakarzinoms eingesetzt wurden. Zur Identifikation neuer Kandidatengene wurden numerische chromosomale VerĂ€nderungen von 161 Prostatakarzinomen aus sieben Genomprofil-Studien systematisch mit den Ergebnissen von vier Expressionsprofil-Studien an 61 Prostatakarzinomen verglichen. Von der resultierenden Liste an Kandidatengenen wurden diejenigen der Kandidaten, fĂŒr welche geeignete Antikörper verfĂŒgbar waren, mittels Immunhistochemie an einem Gewebe-Mikroarray mit 651 Gewebeproben von 175 Prostatakrebspatienten untersucht: FettsĂ€uresynthase (FASN), MYC, Beta-Adrenergische Rezeptor Kinase 1 (BARK1), die katalytischen Untereinheiten der Protein Phosphatasen PP1a (PPP1CA) und PP2A (PPP2CB) sowie der Tumorsuppressor NM23-H1. In univariaten Analysen korrelierte die ImmunfĂ€rbung von PP1a mit dem pathologischen Parameter „Gleason Score“. Die ImmunfĂ€rbung von MYC korrelierte in univariaten und multivariaten Analysen invers mit pT-Stadium und Gleason Score. Zudem war eine Untergruppe von Patienten mit hohen Gleason Scores durch den Verlust der Beta-Adrenergischen Rezeptor Kinase 1 (BARK1) charakterisiert. In dieser IHC-Studie wurden somit neue molekulare Marker von potentieller diagnostischer und therapeutischer Relevanz identifiziert. Des Weiteren wurde die Bedeutung des in der IHC-Studie identifizierten Markers BARK1 bei der Progression des Prostatakarzinoms an Zelllinien analysiert (BPH-1, 22RV1, LNCaP, PC-3, DU145, HEK, Jurkat). BARK1 desensibilisiert spezifisch Agonist-gebundene Beta-Adrenergische Rezeptoren, sodass der bei fortgeschrittenen Tumoren beobachtete Verlust dieser Kinase zu einer verstĂ€rkten Signaltransduktion fĂŒhren könnte. Eine Modulation der Signaltransduktion durch spezifische Agonisten (Isoproterenol, Terbutalin) und Antagonisten (ICI 118,551, ICI 89,406) beeinflusste zwar die Zellproliferation nicht. Die deutlich erhöhte Expression der Beta-Adrenergischen Rezeptor Gene (B1AR, B2AR) in Prostatazelllinien metastatischen Ursprungs (LNCaP, PC-3, DU145) sowie die durch Agonisten und Antagonisten hoch-regulierte Genexpression von B1AR und B2AR in den Zelllinien aus Fernmetastasen, PC-3 bzw. DU145, deuten jedoch auf eine Beteiligung der Beta-Adrenergischen Signaltransduktion an der Metastasierung hin. Ob Beta-Blocker die Metastasierung verhindern können, ist in weiteren Studien zu klĂ€ren. Zusammenfassend konnten in dieser Studie an Prostata-Gewebe-Mikroarrays neue molekulare Marker identifiziert werden. Einer dieser Marker, BARK1, könnte ĂŒber die Regulation der Beta-Adrenergischen Rezeptoren an der Progression des Prostatakarzinoms involviert sein. Die Ergebnisse dieser Studie unterstĂŒtzen den Vorschlag, in der Therapie von Prostatakarzinomen Beta-Blocker einzusetzen, um die Ausbildung von Metastasen zu hemmen

    Characterization of mesostasis regions in lunar basalts: Understanding late-stage melt evolution and its influence on apatite formation

    Get PDF
    Recent studies geared toward understanding the volatile abundances of the lunar interior have focused on the volatile-bearing accessory mineral apatite. Translating measurements of volatile abundances in lunar apatite into the volatile inventory of the silicate melts from which they crystallized, and ultimately of the mantle source regions of lunar magmas, however, has proved more difficult than initially thought. In this contribution, we report a detailed characterization of mesostasis regions in four Apollo mare basalts (10044, 12064, 15058, and 70035) in order to ascertain the compositions of the melts from which apatite crystallized. The texture, modal mineralogy, and reconstructed bulk composition of these mesostasis regions vary greatly within and between samples. There is no clear relationship between bulk-rock basaltic composition and that of bulk-mesostasis regions, indicating that bulk-rock composition may have little influence on mesostasis compositions. The development of individual melt pockets, combined with the occurrence of silicate liquid immiscibility, exerts greater control on the composition and texture of mesostasis regions. In general, the reconstructed late-stage lunar melts have roughly andesitic to dacitic compositions with low alkali contents, displaying much higher SiO2 abundances than the bulk compositions of their host magmatic rocks. Relevant partition coefficients for apatite-melt volatile partitioning under lunar conditions should, therefore, be derived from experiments conducted using intermediate compositions instead of compositions representing mare basalts

    The current state of preclinical prostate cancer animal models

    Get PDF
    Prostate cancer continues to be a major cause of morbidity and mortality in men around the world. The field of prostate cancer research continues to be hindered by the lack of relevant preclinical models to study tumorigenesis and to further development of effective prevention and therapeutic strategies. The Prostate Cancer Foundation held a Prostate Cancer Models Working Group (PCMWG) Summit on August 6th and 7th, 2007 to address these issues. The PCMWG reviewed the state of prostate cancer preclinical models and identified the current limitations of cell line, xenograft and genetically engineered mouse models that have hampered the transition of scientific findings from these models to human clinical trials. In addition the PCMWG identified administrative issues that inhibit the exchange of models and impede greater interactions between academic centers and these centers with industry. The PCMWG identified potential solutions for discovery bottlenecks that include: (1) insufficient number of models with insufficient molecular and biologic diversity to reflect human cancer, (2) a lack of understanding of the molecular events that define tumorigenesis, (3) a lack of tools for studying tumor–host interactions, (4) difficulty in accessing model systems across institutions, and (5) addressing why preclinical studies appear not to be predictive of human clinical trials. It should be possible to apply the knowledge gained molecular and epigenetic studies to develop new cell lines and models that mimic progressive and fatal prostate cancer and ultimately improve interventions. Prostate 68: 629–639, 2008. © 2008 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/58068/1/20726_ftp.pd

    Assessing the mechanisms of common Pb incorporation into titanite

    Get PDF
    Common Pb, the portion of non-radiogenic Pb within a U bearing mineral, needs to be accurately accounted for in order to subtract its effect on U-Pb isotopic ratios so that meaningful ages can be calculated. The propensity to accommodate common Pb during crystallization, or later, is different across the range of U bearing minerals used for geochronology. Titanite frequently accommodates significant amounts of common Pb. However, the most appropriate method to correct for this requires knowledge on the mechanism and timing of common Pb incorporation; information that is commonly difficult to extract. In this study, the spatial and compositional distribution of trace elements (including Pb) in metamorphic titanites from a Greenland amphibolite is investigated on the grain- to nano-scale. Titanites have an isotopically similar signature for both common and radiogenic-Pb in all grains but significantly different quantities of the non-radiogenic component. Microstructural and compositional examination of these grains reveals undeformed, but high common Pb (F207%) titanites have homogeneous element distributions on the atomic scale suggesting common Pb is incorporated into titanite during its growth and not during later processes. In contrast, deformed titanite comprising low-angle boundaries, formed by subgrain rotation recrystallization, comprise networks of dislocations that are enriched in Mg, Al, K and Fe. Smaller cations may migrate due to elastic strain in the vicinity of the dislocation network, yet the larger K cations more likely reflect the mobility of externally-derived K along the orien tation interface. The absence of Pb enrichment along the boundary indicates that either Pb was too large to fit into migrating lattice dislocations or static low-angle boundaries and/or that there was no external Pb available to diffuse along the grain boundary. As the common Pb composition is distinctly different to regional Pb models, the metamorphic titanite grew in a homogeneous Pb reservoir dominated by the break-down of precursor U-bearing phases. The different quantity of common Pb in the titanite grains indicates a mineral-driven element partitioning in an isotopically homogeneous metamorphic reservoir, consistent with low U, low total REE and flat LREE signatures in high F207% analyses. These results have implications for the selection of appropriate common Pb corrections in titanite and other accessory phases

    Genome-wide expression profiling reveals transcriptomic variation and perturbed gene networks in androgen-dependent and androgen-independent prostate cancer cells.

    Get PDF
    Previously, we have developed a unique in vitro LNCaP cell model, which includes androgen-dependent (LNCaP-C33), androgen-independent (LNCaP-C81) and an intermediate phenotype (LNCaP-C51) cell lines resembling the stages of prostate cancer progression to hormone independence. This model is advantageous in overcoming the heterogeneity associated with the prostate cancer up to a certain extent. We characterized and compared the gene expression profiles in LNCaP-C33 (androgen-dependent) and LNCaP-C81 (androgen-independent) cells using Affymetrix GeneChip array analyses. Multiple genes were identified exhibiting differential expression during androgen-independent progression. Among the important genes upregulated in androgen-independent cells were PCDH7, TPTE, TSPY, EPHA3, HGF, MET, EGF, TEM8, etc., whereas many candidate tumor suppressor genes (HTATIP2, CDKN2A, CDKN2B, CDKN1C, TP53, TP73, ICAM1, SOCS1/2, SPRY2, PPP2CA, PPP3CA, etc.) were decreased. Pathway prediction analysis identified important gene networks associated with growth-promoting and apoptotic signaling that were perturbed during androgen-independent progression. Further investigation of one of the genes, PPP2CA, which encodes the catalytic subunit of a serine phosphatase PP2A, a potent tumor suppressor, revealed that its expression was decreased in prostate cancer compared to adjacent normal/benign tissue. Furthermore, the downregulated expression of PPP2CA was significantly correlated with tumor stage and Gleason grade. Future studies on the identified differentially expressed genes and signaling pathways may be helpful in understanding the biology of prostate cancer progression and prove useful in developing novel prognostic biomarkers and therapy for androgen-refractory prostate cancer

    The timing of basaltic volcanism at the Apollo landing sites

    Get PDF
    Precise crystallisation ages have been determined for a range of Apollo basalts from Pb-Pb isochrons generated using Secondary Ion Mass Spectrometry (SIMS) analyses of multiple accessory phases including K-feldspar, K-rich glass and phosphates. The samples analysed in this study include five Apollo 11 high-Ti basalts, one Apollo 14 high-Al basalt, seven Apollo 15 low-Ti basalts, and five Apollo 17 high-Ti basalts. Together with the samples analysed in two previous similar studies, Pb-Pb isochron ages have been determined for all of the major basaltic suites sampled during the Apollo missions. The accuracy of these ages has been assessed as part of a thorough review of existing age determinations for Apollo basalts, which reveals a good agreement with previous studies of the same samples, as well as with average ages that have been calculated for the emplacement of the different basaltic suites at the Apollo landing sites. Furthermore, the precision of the new age determinations helps to resolve distinctions between the ages of different basaltic suites in more detail than was previously possible. The proposed ages for the basaltic surface flows at the Apollo landing sites have been reviewed in light of these new sample ages. Finally, the data presented here have also been used to constrain the initial Pb isotopic compositions of the mare basalts, which indicate a significant degree of heterogeneity in the lunar mantle source regions, even among the basalts collected at individual landing sites

    Limitations of Fe^(2+) and Mn^(2+) site occupancy in tourmaline: Evidence from Fe^(2+)- and Mn^(2+)-rich tourmaline

    Get PDF
    Fe^(2+)- and Mn^(2+)-rich tourmalines were used to test whether Fe^(2+) and Mn^(2+) substitute on the Z site of tourmaline to a detectable degree. Fe-rich tourmaline from a pegmatite from Lower Austria was characterized by crystal-structure refinement, chemical analyses, and Mössbauer and optical spectroscopy. The sample has large amounts of Fe^(2+) (~2.3 apfu), and substantial amounts of Fe^(3+) (~1.0 apfu). On basis of the collected data, the structural refinement and the spectroscopic data, an initial formula was determined by assigning the entire amount of Fe^(3+) (no delocalized electrons) and Ti^(4+) to the Z site and the amount of Fe^(2+) and Fe^(3+) from delocalized electrons to the Y-Z ED doublet (delocalized electrons between Y-Z and Y-Y): X(Na_(0.9)Ca_(0.1)) ^Y(Fe^(2+)_(2.0)Al_(0.4)Mn^(2+)_(0.3)Fe^(3+)_(0.2)) ^Z(Al_(4.8)Fe^(3+)_(0.8)Fe^(2+)_(0.2)Ti^(4+)_(0.1)) ^T(Si_(5.9)Al_(0.1))O_(18) (BO_3)_3^V(OH)_3 ^W[O_(0.5)F_(0.3)(OH)_(0.2)] with α = 16.039(1) and c = 7.254(1) Å. This formula is consistent with lack of Fe^(2+) at the Z site, apart from that occupancy connected with delocalization of a hopping electron. The formula was further modified by considering two ED doublets to yield: ^X(Na_(0.9)Ca_(0.1)) ^Y(Fe^(2+)_(1.8)Al_(0.5)Mn^(2+)_(0.3)Fe^(3+)_(0.3)) ^Z(Al_(4.8)Fe^(3+)_(0.7)Fe^(2+)_(0.4)Ti^(4+)_(0.1)) ^T(Si_(5.9_Al_(0.1))O_(18) (BO_3)_3 ^V(OH)_3 ^W[O_(0.5)F_(0.3)(OH)_(0.2)]. This formula requires some Fe^(2+) (~0.3 apfu) at the Z site, apart from that connected with delocalization of a hopping electron. Optical spectra were recorded from this sample as well as from two other Fe^(2+)-rich tourmalines to determine if there is any evidence for Fe^(2+) at Y and Z sites. If Fe^(2+) were to occupy two different 6-coordinated sites in significant amounts and if these polyhedra have different geometries or metal-oxygen distances, bands from each site should be observed. However, even in high-quality spectra we see no evidence for such a doubling of the bands. We conclude that there is no ultimate proof for Fe^(2+) at the Z site, apart from that occupancy connected with delocalization of hopping electrons involving Fe cations at the Y and Z sites. A very Mn-rich tourmaline from a pegmatite on Elba Island, Italy, was characterized by crystal-structure determination, chemical analyses, and optical spectroscopy. The optimized structural formula is ^X(Na_(0.6)□_(0.4)) ^Y(Mn^(2+)_(1.3)Al_(1.2)Li_(0.5)) ^ZAl_6 ^TSi_6O_(18) (BO_3)_3 ^V(OH)_3 ^W[F_(0.5)O_(0.5)], with α = 15.951(2) and c = 7.138(1) Å. Within a 3σ error there is no evidence for Mn occupancy at the Z site by refinement of Al ↔ Mn, and, thus, no final proof for Mn^(2+) at the Z site, either. Oxidation of these tourmalines at 700–750 °C and 1 bar for 10–72 h converted Fe^(2+) to Fe^(3+) and Mn^(2+) to Mn^(3+) with concomitant exchange with Al of the Z site. The refined ^ZFe content in the Fe-rich tourmaline increased by ~40% relative to its initial occupancy. The refined YFe content was smaller and the distance was significantly reduced relative to the unoxidized sample. A similar effect was observed for the oxidized Mn^(2+)-rich tourmaline. Simultaneously, H and F were expelled from both samples as indicated by structural refinements, and H expulsion was indicated by infrared spectroscopy. The final species after oxidizing the Fe^(2+)-rich tourmaline is buergerite. Its color had changed from blackish to brown-red. After oxidizing the Mn^(2+)-rich tourmaline, the previously dark yellow sample was very dark brown-red, as expected for the oxidation of Mn^(2+) to Mn^(3+). The unit-cell parameter α decreased during oxidation whereas the c parameter showed a slight increase
    • 

    corecore