115 research outputs found
Litter dynamics and phenology of Melaleuca quinquenervia in south Florida
We monitored litterfall biomass at six different sites of melaleuca (Melaleuca quinquenervia (Cav.) S.T. Blake) forested wetlands in South Florida from July 1997 to June 1999. Annual litterfall of melaleuca varied between sites from 6.5 to 9.9 t dry wt ha(-1) yr(1) over the two-year period. Litterfall was significantly higher (p < 0.0001) in scasonally flooded habitats (9.3 t ha(-1) yr(1)) than in non-flooded (7.5 t ha(-1) yr(1)) and permanently flooded habitats (8.0 t ha(-1) yr(1)). Leaf fall was the major component forming 70% of the total litter, woody material 16%, and reproductive material 11%. Phenology of flowering and leaf flush was investigated by examination of the timing and duration of the fall of different plant parts in the litter traps, coupled with monthly field observations during the two-year study. In both years, flowering began in October and November, with peak flowers production around December, and was essentially completed by February and March. New shoot growth began in mid winter after peak flowering, and extended into the spring. Very little new growth was observed in melaleuca forests during the summer months, from May to August, in South Florida. In contrast, the fall of leaves and small wood was recorded in every month of the year, but generally increased during the dry season with higher levels observed from February to April. Also, no seasonality was recorded in the fall of seed capsules, which apparently resulted from the continual self-thinning of small branches and twigs inside the forest stand. In planning management for perennial weeds, it is important to determine the period during its annual growth cycle when the plant is most susceptible to control measures. These phenological data suggest that the appropriate time for melaleuca control in South Florida might be during late winter and early spring, when the plant is most active
Transverse field muon-spin rotation signature of the skyrmion-lattice phase in Cu2OSeO3
We present the results of transverse field (TF) muon-spin rotation (μ+SR) measurements on Cu2OSeO3, which has a skyrmion-lattice (SL) phase. We measure the response of the TF μ+SR signal in that phase along with the surrounding ones, and suggest how the phases might be distinguished using the results of these measurements. Dipole field simulations support the conclusion that the muon is sensitive to the SL via the TF line shape and, based on this interpretation, our measurements suggest that the SL is quasistatic on a time scale τ > 100 ns
Novel rhodium on carbon catalysts for the oxidation of benzyl alcohol to benzaldehyde: A study of the modification of metal/support interactions by acid pre-treatments
Rhodium nanoparticles or rhodium organometallic complexes are mainly used in catalysis for reduction or hydroformylation reactions. In this work instead, we explored the capabilities of Rh nanoparticles as an oxidation catalyst, applied to the oxidation of benzyl alcohol to benzaldehyde under very mild conditions (100 °C, and atmospheric pressure) as a model reaction. Here we report the preparation of novel Rh/C catalysts by using an impregnation protocol, with particular emphasis on the pre-treatment of the carbon supports by using HNO3 and HCl, as well as the characterization of these materials by using an array of methods involving TEM, XPS and XRPD. Our preparation method led to a wide Rh particle size distribution ranging from 20 to 100 nm, and we estimate an upper limit diameter of Rh nanoparticles for their activity towards benzyl alcohol oxidation to be ca. 30 nm. Furthermore, a HNO3 pre-treatment of the activated carbon support was able to induce a smaller and narrower particle size distribution of Rh nanoparticles, whereas a HCl pre-treatment had no effect or sintered the Rh nanoparticles. We rationalise these results by HNO3 as an acid able to create new nucleation sites for Rh on the carbon surface, with the final effect of smaller nanoparticles, whereas for HCl the effect of sintering was most likely due to site blocking of the nucleation sites over the carbon surface. The roles of acid centres on the carbon surfaces for the oxidation reaction was also investigated, and the larger their amounts the larger the amounts of by-products. However, by treatment with HNO3 we were able to convert neutral or basic carbons into supports capable to enhance the catalytic activity of Rh, and yet minimised detrimental effects on the selectivity of the oxidation to benzaldehyde
Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration
Extensive experimental data from high-energy nucleus-nucleus collisions were
recorded using the PHENIX detector at the Relativistic Heavy Ion Collider
(RHIC). The comprehensive set of measurements from the first three years of
RHIC operation includes charged particle multiplicities, transverse energy,
yield ratios and spectra of identified hadrons in a wide range of transverse
momenta (p_T), elliptic flow, two-particle correlations, non-statistical
fluctuations, and suppression of particle production at high p_T. The results
are examined with an emphasis on implications for the formation of a new state
of dense matter. We find that the state of matter created at RHIC cannot be
described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted
to Nuclear Physics A as a regular article; v3 has minor changes in response
to referee comments. Plain text data tables for the points plotted in figures
for this and previous PHENIX publications are (or will be) publicly available
at http://www.phenix.bnl.gov/papers.htm
ASH ISTH NHF WFH 2021 guidelines on the diagnosis of von Willebrand disease
Background: von Willebrand disease (VWD) is the most common inherited bleeding disorder known in humans. Accurate and timely diagnosis presents numerous challenges.Objective: These evidence-based guidelines of the American Society of Hematology (ASH), the International Society on Thrombosis and Haemostasis (ISTH), the National Hemophilia Foundation (NHF), and the World Federation of Hemophilia (WFH) are intended to support patients, clinicians, and other health care professionals in their decisions about VWD diagnosis.Methods: ASH, ISTH, NHF, and WFH established a multidisciplinary guideline panel that included 4 patient representatives and was balanced to minimize potential bias from conflicts of interest. The Outcomes and Implementation Research Unit at the University of Kansas Medical Center (KUMC) supported the guideline-development process, including performing or updating systematic evidence reviews up to 8 January 2020. The panel prioritized clinical questions and outcomes according to their importance for clinicians and patients. The panel used the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach, including GRADE Evidence-to-Decision frameworks, to assess evidence and make recommendations, which were subsequently subject to public comment.Results: The panel agreed on 11 recommendations.Conclusions: Key recommendations of these guidelines include the role of bleeding-assessment tools in the assessment of patients suspected of VWD, diagnostic assays and laboratory cutoffs for type 1 and type 2 VWD, how to approach a type 1 VWD patient with normalized levels over time, and the role of genetic testing vs phenotypic assays for types 2B and 2N. Future critical research priorities are also identified.Thrombosis and Hemostasi
Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background
The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society
- …