217 research outputs found

    Photoreceptor Differentiation following Transplantation of Allogeneic Retinal Progenitor Cells to the Dystrophic Rhodopsin Pro347Leu Transgenic Pig

    Get PDF
    Purpose. Transplantation of stem, progenitor, or precursor cells has resulted in photoreceptor replacement and evidence of functional efficacy in rodent models of retinal degeneration. Ongoing work has been directed toward the replication of these results in a large animal model, namely, the pig. Methods. Retinal progenitor cells were derived from the neural retina of GFP-transgenic pigs and transplanted to the subretinal space of rhodopsin Pro347Leu-transgenic allorecipients, in the early stage of the degeneration and the absence of immune suppression. Results. Results confirm the survival of allogeneic porcine RPCs without immune suppression in the setting of photoreceptor dystrophy. The expression of multiple photoreceptor markers by grafted cells included the rod outer segment-specific marker ROM-1. Further evidence of photoreceptor differentiation included the presence of numerous photoreceptor rosettes within GFP-positive grafts, indicative of the development of cellular polarity and self-assembly into rudiments of outer retinal tissue. Conclusion. Together, these data support the tolerance of RPCs as allografts and demonstrate the high level of rod photoreceptor development that can be obtained from cultured RPCs following transplantation. Strategies for further progress in this area, together with possible functional implications, are discussed

    Investor reaction to IFRS for financial instruments in Europe:the role of firm-specific factors

    Get PDF
    We examine the market reaction to events related to the standard-setting process of International Financial Reporting Standard (IFRS) 9 for over 3,000 European firms that have adopted IFRS. We find that the market reaction to IFRS 9 is largely affected by firm-specific factors associated with information quality and information asymmetry. In particular, lower information asymmetry and higher information quality have a positive effect on market-adjusted returns. This is in conflict with the common view that IFRS 9 will improve accounting quality for those firms that need it most (namely, small firms with low liquidity and concentrated ownership structure)

    A Harmonized Nitrous Oxide (N2O) Ocean Observation Network for the 21st Century

    Get PDF
    Nitrous oxide (N2O) is an important atmospheric trace gas involved in tropospheric warming and stratospheric ozone depletion. Estimates of the global ocean contribution to N2O emissions average 21% (range: 10 to 53%). Ongoing environmental changes such as warming, deoxygenation and acidification are affecting oceanic N2O cycling and emissions to the atmosphere. International activities over the last decades aimed at improving estimates of global N2O emissions, including (i) the MarinE MethanE and NiTrous Oxide database (MEMENTO) for archiving of quality-controlled data, and (ii) a recent large-scale inter-laboratory comparison by Working Group 143 of the Scientific Committee on Ocean Research (SCOR). To reduce uncertainties in oceanic N2O emission estimates and to characterize the spatial and temporal variability in N2O distributions in a changing ocean, we propose the establishment of a harmonized N2O Observation Network (N2O-ON) combining discrete and continuous data from various platforms. The network will integrate observations obtained by calibrated techniques, using time series measurements at fixed stations and repeated hydrographic sections on voluntary observing ships and research vessels. In addition to exploiting existing oceanographic infrastructure, we propose the establishment of central calibration facilities in selected international laboratories to improve accuracy, and ensure standardization and comparability of N2O measurements. Final data products will include a harmonized global N2O concentration and emission fields for use in model validation and projections of future oceanic N2O emissions, to inform the global research community and policy makers

    Ventilation versus biology:What is the controlling mechanism of nitrous oxide distribution in the North Atlantic?

    Get PDF
    The extent to which water mass mixing and ocean ventilation contribute to nitrous oxide (N2O) distribution at the scale of oceanic basins is poorly constrained. We used novel N2O and chlorofluorocarbon measurements along with multiparameter water mass analysis to evaluate the impact of water mass mixing and Atlantic Meridional Overturning Circulation (AMOC) on N2O distribution along the Observatoire de la variabilité interannuelle et décennale en Atlantique Nord (OVIDE) section, extending from Portugal to Greenland. The biological N2O production has a stronger impact on the observed N2O concentrations in the water masses traveling northward in the upper limb of the AMOC than those in recently ventilated cold water masses in the lower limb, where N2O concentrations reflect the colder temperatures. The high N2O tongue, with concentrations as high as 16 nmol kg−1, propagates above the isopycnal surface delimiting the upper and lower AMOC limbs, which extends from the eastern North Atlantic Basin to the Iceland Basin and coincides with the maximum N2O production rates. Water mixing and basin-scale remineralization account for 72% of variation in the observed distribution of N2O. The mixing-corrected stoichiometric ratio N2O:O2 for the North Atlantic Basin of 0.06 nmol/μmol is in agreement with ratios of N2O:O2 for local N2O anomalies, suggesting than up to 28% of N2O production occurs in the temperate and subpolar Atlantic, an overlooked region for N2O cycling. Overall, our results highlight the importance of taking into account mixing, O2 undersaturation when water masses are formed and the increasing atmospheric N2O concentrations when parameterizing N2O:O2 and biological N2O production in the global oceans

    Global patterns of insect herbivory in gap and understorey environments, and their implications for woody plant carbon storage

    Get PDF
    Insect herbivory is thought to favour carbon allocation to storage in juveniles of shade-tolerant trees. This argument assumes that insect herbivory in the understorey is sufficiently intense as to select for storage; however, understoreys might be less attractive to insect herbivores than canopy gaps, because of low resource availability and - at temperate latitudes - low temperatures. Although empirical studies show that shade-tolerant species in tropical forests do allocate more photosynthate to storage than their light-demanding associates, the same pattern has not been consistently observed in temperate forests. Does this reflect a latitudinal trend in the relative activity of insect herbivory in gap versus understorey environments? To date there has been no global review of the effect of light environment on insect herbivory in forests. We postulated that if temperature is the primary factor limiting insect herbivory, the effect of gaps on rates of insect herbivory should be more evident in temperate than in tropical forests; due to low growing season temperatures in the oceanic temperate forests of the Southern Hemisphere, the effect of gaps on insect herbivory rates should in turn be stronger there than in the more continental temperate climates of the Northern Hemisphere. We examined global patterns of insect herbivory in gaps versus understories through meta-analysis of 87 conspecific comparisons of leaf damage in contrasting light environments. Overall, insect herbivory in gaps was significantly higher than in the understorey; insect herbivory was 50% higher in gaps than in understoreys of tropical forests but did not differ significantly between gaps and understories in temperate forests of either hemisphere. Results are consistent with the idea that low resource availability - and not temperature - limits insect herbivore activity in forest understoreys, especially in the tropics, and suggest the selective influence of insect herbivory on late-successional tree species may have been over-estimated

    Autism diagnosis differentiates neurophysiological responses to faces in adults with tuberous sclerosis complex

    Get PDF
    - Background: Autism spectrum disorder (ASD) is a common and highly heritable neurodevelopmental disorder that is likely to be the outcome of complex aetiological mechanisms. One strategy to provide insight is to study ASD within tuberous sclerosis complex (TSC), a rare disorder with a high incidence of ASD, but for which the genetic cause is determined. Individuals with ASD consistently demonstrate face processing impairments, but these have not been examined in adults with TSC using event-related potentials (ERPs) that are able to capture distinct temporal stages of processing. - Methods: For adults with TSC (n = 14), 6 of which had a diagnosis of ASD, and control adults (n = 13) passively viewed upright and inverted human faces with direct or averted gaze, with concurrent EEG recording. Amplitude and latency of the P1 and N170 ERPs were measured. - Results: Individuals with TSC + ASD exhibited longer N170 latencies to faces compared to typical adults. Typical adults and adults with TSC-only exhibited longer N170 latency to inverted versus upright faces, whereas individuals with TSC + ASD did not show latency differences according to face orientation. In addition, individuals with TSC + ASD showed increased N170 latency to averted compared to direct gaze, which was not demonstrated in typical adults. A reduced lateralization was shown for the TSC + ASD groups on P1 and N170 amplitude. - Conclusions: The findings suggest that individuals with TSC + ASD may have similar electrophysiological abnormalities to idiopathic ASD and are suggestive of developmental delay. Identifying brain-based markers of ASD that are similar in TSC and idiopathic cases is likely to help elucidate the risk pathways to ASD

    Latest Miocene restriction of the Mediterranean Outflow Water:a perspective from the Gulf of Cádiz

    Get PDF
    The Mediterranean-Atlantic water mass exchange provides the ideal setting for deciphering the role of gateway evolution in ocean circulation. However, the dynamics of Mediterranean Outflow Water (MOW) during the closure of the Late Miocene Mediterranean-Atlantic gateways are poorly understood. Here, we define the sedimentary evolution of Neogene basins from the Gulf of Cádiz to the West Iberian margin to investigate MOW circulation during the latest Miocene. Seismic interpretation highlights a middle to upper Messinian seismic unit of transparent facies, whose base predates the onset of the Messinian salinity crisis (MSC). Its facies and distribution imply a predominantly hemipelagic environment along the Atlantic margins, suggesting an absence or intermittence of MOW preceding evaporite precipitation in the Mediterranean, simultaneous to progressive gateway restriction. The removal of MOW from the Mediterranean-Atlantic water mass exchange reorganized the Atlantic water masses and is correlated to a severe weakening of the Atlantic Meridional Overturning Circulation (AMOC) and a period of further cooling in the North Atlantic during the latest Miocene

    Synthetic biology approaches in drug discovery and pharmaceutical biotechnology

    Get PDF
    Synthetic biology is the attempt to apply the concepts of engineering to biological systems with the aim to create organisms with new emergent properties. These organisms might have desirable novel biosynthetic capabilities, act as biosensors or help us to understand the intricacies of living systems. This approach has the potential to assist the discovery and production of pharmaceutical compounds at various stages. New sources of bioactive compounds can be created in the form of genetically encoded small molecule libraries. The recombination of individual parts has been employed to design proteins that act as biosensors, which could be used to identify and quantify molecules of interest. New biosynthetic pathways may be designed by stitching together enzymes with desired activities, and genetic code expansion can be used to introduce new functionalities into peptides and proteins to increase their chemical scope and biological stability. This review aims to give an insight into recently developed individual components and modules that might serve as parts in a synthetic biology approach to pharmaceutical biotechnology

    Toward a Comprehensive Approach to the Collection and Analysis of Pica Substances, with Emphasis on Geophagic Materials

    Get PDF
    Pica, the craving and subsequent consumption of non-food substances such as earth, charcoal, and raw starch, has been an enigma for more than 2000 years. Currently, there are little available data for testing major hypotheses about pica because of methodological limitations and lack of attention to the problem.In this paper we critically review procedures and guidelines for interviews and sample collection that are appropriate for a wide variety of pica substances. In addition, we outline methodologies for the physical, mineralogical, and chemical characterization of these substances, with particular focus on geophagic soils and clays. Many of these methods are standard procedures in anthropological, soil, or nutritional sciences, but have rarely or never been applied to the study of pica.Physical properties of geophagic materials including color, particle size distribution, consistency and dispersion/flocculation (coagulation) should be assessed by appropriate methods. Quantitative mineralogical analyses by X-ray diffraction should be made on bulk material as well as on separated clay fractions, and the various clay minerals should be characterized by a variety of supplementary tests. Concentrations of minerals should be determined using X-ray fluorescence for non-food substances and inductively coupled plasma-atomic emission spectroscopy for food-like substances. pH, salt content, cation exchange capacity, organic carbon content and labile forms of iron oxide should also be determined. Finally, analyses relating to biological interactions are recommended, including determination of the bioavailability of nutrients and other bioactive components from pica substances, as well as their detoxification capacities and parasitological profiles.This is the first review of appropriate methodologies for the study of human pica. The comprehensive and multi-disciplinary approach to the collection and analysis of pica substances detailed here is a necessary preliminary step to understanding the nutritional enigma of non-food consumption
    corecore